京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据转化:大数据分析项目的重大议程
"大数据"已经成为商业智能(BI)、分析和数据管理市场领域中讨论度最高的话题之一,当然也是最热门的流行语之一。越来越多的企业开始关注BI和分析供应商,希望可以解决大数据环境中的业务问题。不幸的是,要在大数据中获得可见性是说起来容易做起来难。而且,随着供应商不断攻破大数据分析项目的各种难题,投放到市场的产品种类越来越繁多,企业要想选择最能满足他们需求的一款产品也相当不易。
那么,到底什么才是真正的大数据呢?最近,IT电子杂志eWeek的一篇报道对大数据做了如下定义(其中部分参考了Gartner公司对这一提法的定义):"大数据指结构化与非结构化数据跨网络传输到处理器和存储设备的数量、种类和速度,以及这些数据转化为企业业务建议的过程。"
这样说来大数据就等于数据管理和数据分析,漏掉了关于大数据所面临的业务挑战中很重要的一个方面--复杂度。例如,大数据部署经常涉及到各方面信息,包括来自社交媒体网络、电子邮件、传感器、Web活动日志以及其它数据源的信息等,这些数据很可能与传统的数据仓库系统不兼容。
在许多情况下,所有分离的数据都需要整合,以便在更广泛的层面上产生影响。这可能对业务规则、表连接和大数据分析系统的其它组件关系重大。在考虑存储和查询管理的时候,大数据由于其复杂度,与传统数据完全不同;正因为如此,分析数据库和数据分析软件供应商不得不加快脚步帮助公司处理大数据问题。
理解大数据是评估技术需求和实施大数据分析规划的第一步,然后根据日益庞大和多样化的数据集,理解市场、理解企业在实现商业价值与发挥竞争优势中所遇到的阻碍因素。
大数据分析项目的重大议程
当然,许多企业一直拥有大数据集。但是现在,越来越多的企业存储的信息量就算不是PB级,起码也有TB量级。此外,他们希望每天能分析几次关键数据,甚至是实时分析;而传统BI流程对历史数据进行分析的频率是以周或月为单位的。越来越多复杂查询的处理带来了各种不同的数据集,其中有可能包含来自企业资源计划(ERP)系统和客户关系管理(CRM)系统交易数据、社交媒介和地理空间数据,还有内部文档和其它格式信息等等。越来越多的公司也会想给企业客户提供自助服务的BI功能,让对分析结果的理解变得容易一些。
所有这一切都涉及到大数据分析战略,而且技术供应商处理这些需求的方式是多种多样的。许多数据库和数据仓库供应商都在关注及时处理大量复杂数据的能力。有的用列式数据存储来实现更快速的查询,有的提供内建的查询优化器,有的增加对Hadoop和MapReduce这类开源技术的支持功能。
内存分析工具可能对分析处理速度的提升有所帮助,因为它能减少磁盘数据转换的需求;而数据虚拟化软件和其它实时数据集成技术可对运行中不同数据源的信息进行收集。对于垂直市场而言,现成的分析应用程序都是专门为其定制的,因为诸如电信、金融服务和网络游戏这些行业都必须处理大数据。当公司管理人员和业务经理需要查看大数据分析查询结果时,数据可视化工具可以简化其流程。
在数据和分析需求方面符合以上分类描述的企业,在制定实施方案、对大数据基础设施进行选型之前,需要考虑以下问题:
数据及时性(并不是所有数据库都支持实时数据可用性)
各种数据源需要与数据关联性和业务规则复杂度进行链接,以获得一个包含企业绩效、销售机会、客户行为、风险因素和其它业务指标的全面视图。
由于分析的需要,历史数据的数量也需考虑在内。如果我们需要五年的数据,而一个数据源只包含两年的信息,那么该怎么办呢?
哪些技术供应商在业内具有大数据分析方面的经验?有没有他们的业绩记录?
在企业内部,不同数据入口的负责人是谁?他们在大数据分析策略中分别扮演什么角色?
这些因素并不能从根本上影响需求的规划,但是它们可以帮助企业部署大数据分析系统、选择最为合适的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27