京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代小数据分析
大数据挖掘需要精通数据库、计算机编程和深厚的统计学基础,有的甚至要涉及运筹学范畴,是一门复合型的应用科学。大数据的案例现在着实是一抓一大把,比如国外典型的”啤酒与尿布”的案例,在了解数据分析之前,不妨来看看几个有趣的应用案例。
Case1 数据新闻让英国撤军
2010年10月23日《卫报》利用维基解密的数据做了一篇“数据新闻”。将伊拉克战争中所有的人员伤亡情况均标注于地图之上。地图上一个红点便代表一次死伤事件,鼠标点击红点后弹出的窗口则有详细的说明:伤亡人数、时间,造成伤亡的具体原因。密布的红点多达39万,显得格外触目惊心。一经刊出立即引起朝野震动,推动英国最终做出撤出驻伊拉克军队的决定。
Case2 大数据与乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。
Case3 Google成功预测冬季流感
2009年,Google通过分析5000万条美国人最频繁检索的词汇,将之和美国疾病中心在2003年到2008年间季节性流感传播时期的数据进行比较,并建立一个特定的数学模型。最终google成功预测了2009冬季流感的传播甚至可以具体到特定的地区和州。
Case4 奢侈品销售
PRADA 在纽约的旗舰店中每件衣服上都有RFID码。每当一个顾客拿起一件PRADA进试衣间,RFID会被自动识别。同时,数据会传至PRADA总部。每一件衣服在哪个城市哪个旗舰店什么时间被拿进试衣间停留多长时间,数据都被存储起来加以分析。如果有一件衣服销量很低,以往的作法是直接干掉。但如果RFID传回的数据显示这件衣服虽然销量低,但进试衣间的次数多。那就能另外说明一些问题。也许这件衣服的下场就会截然不同,也许在某个细节的微小改变就会重新创造出一件非常流行的产品。
除了国外这些经常用于商业培训课程的案例外,数据分析其实并不遥远,在国内也不乏应用,比如共和国的开国元帅林彪就曾经依靠敏锐的数据嗅觉和军事天赋,成功捣毁敌营总部。
从 2008年的一个偶然机会第一次接触“数据挖掘”(DataMining)这个新名词以来,掐指一算在数据挖掘应用相关领域度过了6年。我的本专业是化工,整天应该与塔、釜、换热器、化学反应、物料守恒等打交道。开始接触这个专业的目的是为了利用数据分析的一些功能来优化生产运营,让企业以更高的效率、更低的成本和更好的质量去运营。那如何可以做到效率更高、成本最低和质量更好,它们的关键改善点和控制点在哪里呢?这需要数据积累,需要数据分析,需要数据模型,它们在哪里呢?
2008年时国内企业在数据挖掘应用中摸索起步,远不如现在大数据火热。如今大数据最火的商业应用主要集中在互联网、银行、电信等领域。基于行业应用限制,我无法接触到真正的大数据挖掘,但是幸运的是我还是碰到了职业和兴趣的重合点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16