
商业地产调研如何筹备?怎样执行?数据如何分析
商业地产市场调研筹备工作
在调研之前的筹备工作中,有7个需要注意的关键点。
1、分析调研目标
调研筹备工作的第一个关键点是分析调研目标,很多人甚至专业人士常常省略这一点。分析调研目标之所以重要,是因为在项目的不同阶段,调研目标或调研重心是不同的。
通常而言,一个项目可分为三个阶段,具有相应的调研目标:
拿地待报规阶段
报规待建阶段
项目主体在建阶段
2、罗列重点问题
3、提炼调研核心问题
4、制定调研计划
5、设计调研表格
6、设计调研问卷
7、培训、考核调研人员
调研执行关键点
1、态度认真
调研人员在执行调研时,首先要做到态度认真。很多人由于态度不认真,败给了细节,不仅浪费了大量精力、人力、物力,还错失了把控项目的机会。一般来说,对一个大项目进行调研需要花费一个月左右的时间,在调研过程中,项目的其他工作也在同步推进,如果由于态度不够认真导致调研失败,其他工作必然也会受到阻碍。
2、数据准确
调研数据准确与否决定项目的成败。保证数据准确的关键点有2个:
经理要对下级交付的每一份表格、问卷都要及时检查审核。
经理在看完这些材料后要立刻指导,不能把工作拖到第二天。检查内容包括调研内容的完备性、填写得是否齐全、是否规范等。
3、开好调研总结会
开好调研总结会是执行调研的制度性保障。通过调研总结会,能够让调研人员准确、及时地反映客观情况,摒弃错误的内容,需要经理严格把关。
召开调研总结会要经过一定的流程:
业务员依次汇报调研过程。
突出重点。业务员要反映调研过程中发现的重点问题、核心问题,拒绝流水账。
发现问题。即反馈问题,能反映出客户对项目的了解和理解程度。
明确成果。业务员在和客户沟通的过程中,要掌握了其心理动机,发现其心理变化,抓住其相关需求。
只有做到这12个字,才能使调研总结会不浮于表面,而是深入地探讨、解决问题。
调研数据分析
分析调研数据有三个关键点:定量数据的验证作用、定性数据的论证作用、数据与结论必然性的评估。
1、定量数据的验证作用
定量数据是用来验证假设的
定量数据有三个核心工具:加法、减法和波动。通过定量数据并不能确定如何执行项目,但却能用来验证假设。假设是主观与客观的结合,客观的是现有的市场体量,主观的是假设的要做的业态的可能性,因而,假设包含一定的艺术性和技巧性。
思维的第一个层次是定义;
第二个层次是分类;
第三个层次是提炼同类中更具集中性的内容,即概括;第四个层次是在此基础上进行的推理、判断;第五个层次是进行创造性的假设,没有创造性的假设不可能有突破。定量数据能验证假设结果的错误性,而不能验证其正确性。
2、不同定量数据的验证作用不同
可以累加的定量数据用加法验证规模,不可以累加的定量数据用波动验证其范围。当然,在某些特殊情况下,某些指标可以突破这个范围,但这种突破必须建立在一定的支撑点上。
3、定性数据的论证作用
定性数据的核心作用是考察商业认同度。定性数据的论证作用有三种表现形式:推理基础、假设前提和判断证据。
推理基础
在调研过程中,如果没有调查问卷得出的定性数据,就无法进一步推理项目的可行性。因此,定性数据是调研的推理基础。
假设前提
通过定性数据,能够推出结论,而非验证结论,因而定性数据起着论证假设前提的作用。调研的样本越多,论证假设前提的准确性越高。
判断证据
通过定性数据,能够判断证据的真实性。样本越大,越能为这种判断提供支撑。
4、数据与结论必然性评估
在进行调研时,首先要了解调研数据的分类,明确其是定量数据还是定性数据。进而通过调研数据验证假设结论,比较分析后得出结论。接着,根据假设结论的逻辑性倒推数据支撑,用调研数据与倒推数据进行比较,从而得出结论。同时,还要对调研数据进行分类汇总、归纳,推导出结论,并综合项目信息验证结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08