京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这10家创业公司将大数据分析推向全新高度
有结构、无结构数据的崛起创造了一个蓬勃发展的市场,其价值预计将在 2018 年达到415亿美元左右。大数据市场的快速增长造就了大量的供应商的出现,他们都希望能从中获利。在众多竞争市场地位的供应商中,有许多旨在帮助组织收集和分析数据的创业公司。CBR(计算机商业评论) 从中选出了10个值得被关注的公司。
1. Confluent
Confluent 公司成立于 2014,已经获得超过 3000 万美元的投资,这些投资来自于 LinkedIn、Index Ventures、Benchmark Capital 和 The Data Collective 等投资者。
该公司由 Apache Kafka 的开发者们创立(Apache Kafka是一个实时通讯和大数据流引擎)。其最初创立于 LinkedIn 内部,而后归入 Apache 软件基金会旗下,最后分离出来作为一个独立的公司。Confluent 本质上是 Apache Kafka 软件的商业提供者和技术支持者。当还在 LinkedIn 的时候,Confluent 已经开始帮助 LinkedIn 全面检测公司里发生的一切,作为一个实时的 Kafka feed,为 Hadoop、Search、Newsfeed 等数据系统填入数据。
Confluent 专注于构建一个数据流平台,从而帮助企业获得实时的企业数据。Confluent 提供的编程语言包括 Java、C 语言和C++,通过其 REST 服务器,可以使用任何网络连接工具来生成信息、实现通讯。
2. H2O.ai
H2O.ai (曾用名 0xdata)公司成立于 2011,已经获得了 3360 万美元的投资,这些投资来自于 Nexus Venture Partners、Paxion Capital Partners 和 Transamerica Ventures 等投资者。
该公司由 Platfora 和 Cliff Click 的联合创始人 SriSatish Ambati 创立,他还是 Java 虚拟机的领头开发者。公司创立之初的想法是,让开发人员和数据学家更简单轻松地应用机器学习算法。
该公司提供一个开源的机器学习平台,其设计是为了在使用 Web UI 或者不同的编程环境(如 R、java、python、Scala 、JSON)的同时,也能使用 Hadoop 和 Spark。该平台支持的数据库和文件类型包括微软 Excel、R Studio、和Tableau。H2O可以帮助开发模型培养机器学习能力,从而可以对数据进行解析、获取和模拟。
最基础的是,该技术有助于快速创建和应用机器学习算法。
3. AtScale
Atscale 成立于 2013,至今已募集了900万美元的投资,这些投资来自于 AME Cloud Ventures、Storm Ventures 和 UMC Capital 等投资者。该公司的想法是使用熟悉的商业智能(BI)工具和界面(如 SQL、Tableau)和 Hadoop这样的技术解决问题,也就是,它们在商业用户、可视化工具和基础 Hadoop 平台间建立桥梁。
其目标是帮助企业对现有数据进行数据分析,而且不需要将数据移入专门的分析工具,因为移入专门的分析工具有时间和金钱成本。
Atscale 由 Hadoop 和 BI 的前员工创立,他们具备把 Hadoop 集群转变成规模化 OLAP 服务器的能力。另外,Atscale 支持 BI 工具,可以和 SQL 或 MDX 进行信息交流。
4. Interana
把提供事件数据的行为分析作为自己招牌的 Interana 公司帮助企业做数据主导的决策。该公司成立于 2013 年,由首席执行官 Ann Johnson 和首席技术官 Bobby Johnson 联合创办,目前完成了 2820 万美元的融资,其中在由 Index Ventures 领投的 B 轮融资中获得了 2000 万美元。
Interana 专注于提供互动分析,帮助企业了解他们客户的行为和产品使用情况。该公司使用一个专有的数据库,能让它快速处理数十亿的事件。例如像 Tinder 这样的公司用它来进行网络连接故障检修,测量社交媒体的有效性,以及监测用户的刷机方式。Tinder 在全公司广泛使用 Interana,从而改善自己的服务和操作。
5. Tamr
Tamr 结合了机器学习软件和数据科学。该公司由 Andy Palmer、Mike Stonebrake 等人共同创立,他们都是数据研发的老兵。
Tamr 使用一个可扩展的数据统一平台,通过机器学习和人工输入的方式,帮助客户使用被孤立在不同的数据库、电子表格、记录数据、和合作伙伴资源里的数据。
Tamr 一种获得 4240 万美元融资,其中在最近的 B 轮融资中得到 2520 万美元。主要投资者包括 Hewlett-Packard Ventures、Thomson Reuters 和 MassMutual Ventures。简单来说,Tamr 是一个数据清理的创业公司,旨在清理来自不同资源的数据,从而让数据更容易被使用。
6. Wavefront
Wavefront 成立于 2013 年,总部设在加利福尼亚的帕洛奥图,至今已获得 2050 万美元投资,这些投资来自于 Sequoia Capital、Sutter Hill Ventures 和 Webb Investment Network 等投资者。
该公司提供一个实时的分析平台,可以把一个 IT 公司所有系统中的数据抽离出来,通过识别和诊断以预防崩溃。Wavefront 使用了一种查询语言,从而可以对时间序列数据进行处理,它也允许用户通过下拉菜单、过滤器和自动生成表格来手工查询。该技术最初是在 Google 和 Twitter 内部开发,现在正在被 Box、First Data 和 Workday 等公司使用。
7. BlueTalon
BlueTalon 是另一家成立于 2013、总部在加利福尼亚的公司,只不过它位于 Redwood。该公司至今已筹集了 1140 万美元的投资,这些投资来自于 Data Collective、Signia、Venture Partners 和 Bloomberg Data 等投资者。
BlueTalon 为大数据提供数据中心安全保障,例如 Hadoop、SQL,它主要是对 Hadoop 分布式文件系统使用访问控制和动态掩蔽实现这一点的。
除了在 Hadoop 上有效,它也能在微软 Azure 和亚马逊网络服务上工作。据 BlueTalon 所言,它允许用户自定义数据配置设定,这意味着企业用户和开发人员可以只访问他们所需要的数据。该公司还提供审核服务,让用户知道什么人在什么时候,因为什么原因访问了什么数据。
8. Cazena
Cazena 虽然只是成立于 2014,但已经从诸如 North Bridge Venture Partners、Growth Equity、Andreessen Horowitz 和 Formation 8 等投资那里筹集了 2800 万美元。在 2015 七月重新回归之后,Cazena 带来了一项叫做 Big Data-as-a-Service 的大数据服务。据该公司表示,将大数据处理转移到云端的过程只需要轻轻点击三次。
该公司专注于通过 Data-As-A-Service 大数据服务实现在加密的云端进行大数据处理。它的产品分为 Data Lake、Data Mart 和 Sandbox 三个版本。
为了智能工作,该公司供应和优化了云端基础设施,其中也包含 Hadoop、Spark、MPP SQL、Search 这样的数据技术。
另外,Cazena 提供端到端的数据加密技术,企业掌控着静态和动态秘钥。
9. DataTorrent
DataTorrent 成立于 2012 年,是这 10 家公司中的老创业公司之一。到目前为止它已募集到 2380 万美元,其中包括由 Singtel Innov8 领投的1500 万美元的 B 轮融资 。
该公司专注于实时大数据分析技术,其技术基础是一个开源的数据流和处理引擎,该公司表示此引擎在 Hadoop 集群中,每秒可以处理数十亿的事件。
DataTorrent 支持摄入的数据来源有 Kafka、AWS S3n、HDFS、NFS、JMS等等。
DataTorrent RTS Core 是一个开源的企业级统一的数据流和批量处理引擎。它提供了一整套系统服务,可以帮助开发人员专注于 Business Logic。该公司还提供一个完整的 Hadoop 集成应用的管理控制台,为熄灯管理提供图形界面。
10. Databricks
Apache Spark 这项技术如今已经在数据分析界非常流行。而这家公司正是由 Apache Spark 的开发者们在加州大学伯克利分校的 AMPLab 实验室创立。Databricks 是 Spark 的商业服务和支持提供商。
这几位开发者想要借助 Spark 在整个社区和众多厂商(IBM)那里的影响成立 Databricks 。 Databricks 本身也为交互分析、可视化、管理数据,以及协作与集成提供工具。
在 2013 年成立后,它开始用 Spark 帮助客户进行基于云端的大数据处理。Databricks 已经在两轮融资里筹集到 4700 万美元,其中 2014 年 6 月 B 轮融资获得 3300 万美元。
该公司与 Spark 的发展紧密联系在一起,而在最近也公布了三个特征变化。其中一个是开始执行 Tungsten 项目的下一阶段从而加速 Spark,他们是通过解决 Java 的记忆处理限制、改善实时数据流系统、将其使用的多种数据结构 API 整合为一个 API 实现加速目的的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12