
强强联合打造稀缺商业数据分析课程。本课程将世界客户关系管理方面的领导者美库尔公司 (Merkle Inc)在专业管理咨询方面的几十年的经验积累与CDA数据分析研究院的教学理念与方法相结合,归纳了在商业智能系统设计、客户画像、精准营销、生命周期价值管理等主题的课程。为实践者提供全面的使用R进行商业数据分析的解决方案。
一、课程安排
地点 |
课程 |
时间 |
讲师 |
报名 |
北京 |
R语言数据挖掘 |
5月28-29日,6月4-5日,11-12日 |
常国珍、翟辉 |
|
广州 |
R语言数据挖掘 |
5月28-29日,6月4-5日,11-12日 |
张良均 |
|
直播 |
R语言数据挖掘 |
5月28-29日,6月4-5日,11-12日 |
常国珍、翟辉 |
二、课程讲师
常国珍,北京大学商学博士,法学硕士。曾就职于亚信科技BOC部门、方正国际金融事业部、德勤管理咨询信息技术系统咨询部,SAS公司资深讲师,多家金融与互联网公司数据挖掘技术顾问。从事银行与电信行业操作与信用风险建模、产品精准营销、客户价值提升等数据挖掘项目。擅长基于客户行为分析的数据挖掘建模。研究方向为宏微观接合研究,兴趣点在于宏观环境变化对微观主体行为的预测与后果分析。
美库尔公司 (Merkle Inc):瞿辉,目前任职美库尔商务信息咨询公司资深分析师,中国科学技术大学统计学硕士。精通各类机器学习算法与主流分析工具,在保险、医药、零售以及电商等多个行业具有丰富的数据分析项目实践。在客户画像、用户分群、精确营销、销售预测、营销组合优化和多渠道广告归因等多方面有丰富经验。
张良均, 高级信息系统项目管理师,现为广州泰迪智能科技有限公司总经理,毕业于华中科技大学工学硕士,一直从事数据挖掘技术及其应用的策划和研发。《数据挖掘:实用案例分析》、《神经网络实用教程》主编,数据挖掘相关论文数十篇,专利近10项。广东工业大学、华南师范大学兼职教授。主导研发基于云计算的海量数据挖掘平台,获得SAS及SPSS数据挖掘认证,具有电力、电信、银行、水产养殖、制造企业、电子商务和电子政务的项目经验和行业背景。
三、课程大纲
CDAII-R:前沿营销与客户关系管理商业案例
|
|||
时间 |
课程 |
大纲简介 |
内容描述 |
第一阶段 |
R与统计语言基础 |
1.R语言基础 2.数据整合 3.描述分析与统计基础 |
掌握使用R进行 数据分析的关键技能。 |
第二阶段 |
商业智能(BI)分析系统实现 |
1.探索数据分析 2.绘图包 3.BI功能实现 |
数据分析的目的在于给业务决策提供依据。
|
第三阶段 |
数据清洗与转换 |
1.缺失值处理 2.噪声值处理 3.数据变换 4.数据归约 |
对数据清洗与转换进行详细的讲述。 需要用到描述性统计、决策树、聚类、主成分分析等方法。 |
第四阶段 |
客户分析与营销模型 |
1.客户画像 2.客户细分 3.精准营销 4.营销组合优化 |
根据客户的需求提供差 异化的服务,解决营销资源瓶颈。 需要用到描述性统计、决策树、聚类、因子分析等方法。 |
第五阶段 |
风险预测与检测模型 |
1.信用风险建模 2.欺诈建模 3.客户终身价值分析 |
本部分会涉及信用风险和操作风险建模的主要内容。 |
第六阶段 |
长尾理论与推荐系统设计 |
1.级联与流行 2.幂率与长尾理论 3.推荐系统设计 |
本部分是理论与技术的结合。 |
第七阶段 |
模型管理 |
1.模型生命周期 2.工作流设计 |
本部分内容讲解构建数据分析团队人员匹配, 排期管理,以及人、财、物的优化 |
四、案例节选:
一、商业智能(BI)分析系统实现
直观了解关键指标在全国的分布状况(交易额,交易量,客单价等)
销售额中贡献比例最大的客户是在什么年龄段,来自于什么区域?
近几年的销售状况如何,同比环比销售额趋势?
我们今年销售的明星产品和去年比发生了什么变化?
会员注册了之后多久会再回到柜台二次购买?
二、客户分析与营销模型
Q:基于客户的多维度的数据(大数据),从多个维度入手将客户分成若干群组,使得每组中的客户在特定的市场环境下对营销活动的响应行为是相似的,以便于我们进行精准化营销和高效的客户管理
五、最新优惠
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件);
2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠;
3. 老学员9折优惠;
4.报名任何一个专题可额外添加1500元获得另一个专题的全套视频。
六、关于证书
1. 参加由CDA协会和经管之家主办等级认证证书LEVEL II,考试通过可获得CDA LEVEL II建模数据分析师证书;
报考网址:http://exam.cda.cn/
2. 可申请工信部《数据分析师证书_高级》,申请费用400元(培训后即可得到)
七、在线报名
1.在线填写报名信息
2.给予反馈,确认报名信息;
3.网上缴费:
4.开课前一周发送电子版课件和教室路线图
八、咨询方式
——Join And Learn!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10