
小白学数据分析之解析在线平高比
什么是在线平高比
在线平高比,也有叫做CCU比率的,即平均在线占最高在线比例,公式就是R=ACU/PCU。这个公式看似很简单,大家估计很多人都会使用,那么究竟这个公式要说明什么问题?在解释问题之前简单的把ACU和PCU说明一下,因为很多人还不清楚。
ACU平均同时在线人数
定义
统计当日所有统计时刻中总在线人数的平均值,即总的在线人数的和除以统计时刻数。比如:
在00:00:00————6000人在线
在00:10:00————6600人在线
在00:20:00————6900人在线
总在线人数之和19500人次,3个统计时刻,那么ACU=19500/3=6500人。至于PCU就是这样的统计数据中最大的值。比如上述的数据中PCU=6900。
ACU/PCU的预警值
ACU/PCU的预警值是0.5,也就说在一款游戏中我们能够接受的最低标准是0.5,低于0.5的标准就说明游戏存在比较大的问题。那么为什么必须是0.5?
首先我们来看CCU曲线图
我们都清楚在游戏中一天24小时,晚间是一般游戏的高峰时期,PCU也一般会在晚上出现,当然也有在下午的出现的时候,都不尽相同。这也就意味着一条CCU曲线必然是有很大的起伏和落差的。
CCU曲线绘制的前提是通过对每个统计时刻的数据进行汇总才能得到这条曲线,那么这样现在我们这样来做这条曲线,如下图:
我们看到了橘黄色的部分其实就是这一天所有统计时刻的人数总和,其实也就是橘黄色部分的面积,这是一个不规整的图形,显然如果我们要去计算这个图形的面积只能通过微积分解决(这也是微积分的定义和来源)。
那么说的这些和ACU有什么关系?
如我们所定义的,ACU是平均同时在线人数,是总人数/总的统计时刻,ACU的出现等于说把这个不规整的图形变成了一个长方形,长是统计的时刻,宽是ACU的值。
可以看到我们把原来不规整的图形变成了一个完整的长方形,ACU作为了基准线,那些在基准线以上的面积补充到了基准线以下的部分,从而构成了这个长方形。
至此,我们就可以开始解释为什么是0.5了。原因其实很简单,如果出现在了ACU基准线以上的部分越多,那么整体上的PCU表现就越好,进而我们也就发现了在24小时内玩家的上线活跃度是提升的,增高的。
但是实际当中情况不是这样的,更多的时候其实是一段时间走高的,比如晚上7点-12点这段时间的数据时走高的,这是PCU缓慢形成的时间区间。而同时我们在计算ACU时,取的是平均值,PCU拉的越高,就意味着这形成这一峰值所需要的时间是很长的(一般不会出现瞬间形成PCU),换句话形成PCU,得有一个缓慢上升的过程,但是我们希望这个上升想斜坡长,陡,这样也以为着活跃的用户很多。
然而如果我们发现这个比值已经低于0.5了,那么也就意味着:
PCU形成的不明显,波峰被稀释掉了;
关键时期的人气没有得到提升;
游戏产品的生命周期进入衰退阶段(长期0.5以下);
突发情况造成。
ACU/PCU能干什么?
刚才已经说了这个指标低于0.5时的分析情况,那也是这个指标的用途所在,补充还有几点:
我们看到了ACU是经过计算的平均值,相比PCU而言,其变化幅度是相对比PCU缓慢的,进而ACU变化的缓慢,PCU变化是很迅速的,因为PCU容易受到很多因素的影响:
比如某个新活动;
新版本的更新;
小号泛滥;
事件营销。
进而我们可以推断出,一般情况下这条曲线是不会剧烈的变化(因为不受影响的情况下PCU波动也是相对稳定的),但是如果有了以上的因素刺激,那么这条曲线变化很剧烈。这样很容易就能知道一些我们想要的结果,利于我们分析,比如
游戏游戏粘性是否下降;
游戏活动分析;
版本更新分析;
活动更新分析;
工作室小号情况参考。
总的来说,虽然只是一个比值,但是其背后的只是和内容还是很多的,这需要我们去分析和把握。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18