京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2016年中国大数据行业市场运行现状分析
随着互联网、云计算和大数据产业的加速发展,我国数据中心产业也进入了大规模的规划建设阶段。2011年到2013年上半年全国共规划建设数据中心255个,已投入使用173个,总用地约713.2万平方米,总机房面积约400万平方米。
2010年中国数据中心总数量已经达到504,155个,市场总规模达到92亿美元,IDC预测该市场在2010年至2015年仍将保持两位数的增长率,2015年该市场规模将达到约157亿美元。
2009-2015年数据市场场规模走势
一、数据中心市场的发展分析
1、数据中心市场的发展初期
数据中心的概念随互联网进入中国,第一次掀起了建设数据中心的热潮。但是由于互联网在中国尚未普及,在用户数、内容、应用等各方面都存在明显的局限性,用户对数据中心尚未产生有效的需求。在2001年的互联网泡沫破灭之后,数据中心的发展很快进入了蛰伏期。
2、数据中心市场的发展中期
随 着互联网的普及和我国信息化建设的发展,无论是国民经济还是百姓生活对信息技术的应用和依赖都日益广泛和深入,从服务提供方和用户方两端都纷纷投入巨资建设数据中心。数据中心行业经历了从小到大、优胜劣汰的过程,作为重要的IT基础设施,数据中心迎来了快速发展的黄金期。
3、数据中心市场的发展成熟期
互联网的发展和国民经济各主要行业的信息化建设日趋成熟,移动互联网、云计算等新兴技术和商业模式不断涌现,数据中心的数量不断增加,规模不断扩大。与此同时,行业内越发重视运营的效率和资源整合的能力,建设绿色数据中心成为未来数据中心发展的方向。
十二五时期,中国IT投资规模将达到1,600亿美元,IT投资的增长促进了数据中心市场的发展,数据中心的建设和升级反过来又将带动包括服务器、存储和基础设施等相关IT市场的增长。
IDC将数据中心按照不同的规模划分为五个等级,对该市场的研究包含了从服务器机柜到数千平米的企业级数据中心的各类型数据中心的情况,并且从最终用户的IT投资和服务提供商的外包服务等不同角度对数据中心整体市场进行跟踪和分析
二、数据中心市场分析
各政府部门对战略性新兴产业的大力扶持,以及对云计算、物联网、宽带和下一代网络的发展的高度重视,都给中国数据中心市场的发展带来极大利好因素。相应政策 的引导和落实,客观上促进了数据中心市场的快速增长。地方政府大规模建设云计算园区,客观上促进了数据中心市场的发展。
国内市场规模破百亿,未来年均增长超30%,数据显示 7 月30 号发布的中国大数据应用行业的报告显示,预计2015 年中国大数据市场营销规模超过100 亿,2018 年将达到258.6 亿人民币,环比增长率达37.2%。
2015-2018 年中国大数据市场规模预测(单位:亿元)
大数据在全球范围内的市场规模同样巨大,根据IDC 发布最新研究结果,预测到2018 年全球大数据技术和服务市场的2018 年的复合年增长率将达到26.4%,规模达到415 亿美元,是整个IT 市场增幅的6 倍。从行业结构来看,大数据应用主要集中在金融、通信、销售和政府领域,在医疗和旅游行业也有应用,但占比相对较低。
2014 年中国大数据市场行业结构图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27