
尽管大数据的项目已经向很多公司敞开怀抱,但是事实上,大数据技术的缺乏和企业偏好市场嗅觉已然阻碍了大数据发展的进程。
大数据落地的元年已经来临!——在微软、亚马逊、IBM等国际巨头的云计算落地中国之后,业界关于大数据落地元年的呼声高涨。一时间,无论是新型的互联网企业还是传统企业,都开始蜂拥赶往大数据世界。但事实上,就目前来看,真正能利用好已有数据的企业寥寥无几,不少企业还是由老板的第六感说了算。
到底,大数据时代应该信什么, 数据科学还是老板的第六感?
当然,大数据技术能力的缺乏导致了大数据发展的缓慢。但即使企业有开发挖掘大数据的能力,但企业却仍然喜欢使用未经证实的意见或是自己对市场的嗅觉,也就是拍脑袋做决策,而不是利用数据科学。这就是一个非常奇怪但却普遍存在的现象。
还有一个在笔者看来也是一个神奇的存在:很多企业在使用数据的时候,都是有选择性的使用能够支撑其观点和决策的数据,显然这样的选择也是一个怪象,一个数据被决策者绑架的怪象。
视觉分析公司Atheon Analytics总经理Guy Cuthbert在伦敦的一个圆桌会议上曾表示,在真正的零售领域,零售商都想方设法的避开涉及生产和测试假设的数据科学,这就是目前的现状。
“他们从来没有质疑过这件事的真伪,当然也就不会怀疑商店、一些特别的区域都发生了什么。所以总是有一大部分的人总是按照别人告诉他的方式做事情,而不是重新思考是怎么回事儿。”他补充道。
Cuthbert很大一部分的工作是将企业从这种思想转向数据驱动的思想,然后开始使用事实-假设-科学的思维方式。但据Cuthbert的推算,全球只有1%或是0.1%的业务是数据驱动型的。
确实,在现阶段还是有很多拍脑袋做决策的企业,因为他们不明白为什么要依靠数据来做决策,很多高层发表高谈阔论,但这些高见的背后通常是没有任何的数据和案例做支撑的。
所以,如果数据动画师和数据科学家要做什么事儿的话,那就是教会我们这一代事实面前隐藏了很多神奇的数据,如果我们的选择不是对它们视而不见。然而,让企业揭穿神话接受以数据为基础的结论并不容易。
当然有接受大数据的企业自然就会有排斥的企业,据Cuthbert所说,仍然有不少企业产生对大数据有很深的敌意并痛斥以数据为基础的决策是完全不对。要不然就是,尽管有一些企业开始尝试接受数据科学,但是他们采取的是过于狭隘的焦点,并非真正的拥抱大数据。
也有尝试大数据的企业中,也有部分企业关注于已知的未知变量,例如他们说:“我们预计明年将会实现6%的增长,让我们保证6%的增长吧”。这就是一个典型的例子。他们不会去寻找30%甚至是120%的机会,但是他们自己对此却毫不知情,这其实也是一种“病”。
编辑观点:
大数据时代信什么 数据科学还是老板第六感?
这是一个值得深究的问题。
大数据之于企业的价值无须赘述,对于那些完全排斥大数据的企业,我只能说他们需要的时间,希望这个时间是在倒闭之前。对于那些病态的接受大数据的企业,在大数据发展过程中这是一种可理解的病态,但并非能接受,希望这个治愈的时间不要太长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07