
20个问题揭穿冒牌数据科学家
如今数据科学家正式成为21世纪最性感的工作,人人都想来分一杯羹。
这也意味着会有一些冒牌货。这些人自称数据科学家,却不具有相应的技能。
这不见得是有意欺骗。数据科学是崭新的领域,目前对此岗位也缺乏被广泛认可的描述。这意味着许多人会认为自己是数据科学家,仅仅因为他们常跟数据打交道。
“冒牌数据科学家通常是某一个特定学科的专家,且坚信他们的学科才是唯一真正的数据科学。这种想法忽略了一个事实:数据科学是一整套科学工具与技术(数学,计算,视觉,分析,统计,试验,问题界定,模型建立与检验等)的集合,用于从数据收集中获得新发现、洞察与价值。
– Kirk Borne,Booz Allen Hamilton首席数据科学家,RocketDataScience.org创始人
识别冒牌数据科学家的第一个办法是了解你要寻找哪些技能。了解数据科学家/数据分析师/数据工程师的区别很重要,尤其当你在计划招募这些稀有物种其中之一的时候。
为了帮助你区分真正的数据科学家与冒牌的(误入歧途的)数据科学家,我们总结了一个问题清单,内含20个问题。在面试数据科学家时你可以提出这些问题。
解释什么是正则化,以及它的用处。
你最崇拜哪些数据科学家?哪些创业公司?
你会如何验证一个多元回归预测模型的量化变量的结果?
解释什么是准确率(precision)和召回率(recall)。它们与ROC曲线有什么关系?
你如何证明你对某个算法进行的改进,与原算法相比是有了真正的改进?
什么是根本原因分析(root cause analysis)?
你是否熟悉以下概念:价格优化、价格弹性、库存管理、竞争(商业)智能。举例说明。
统计功效(statistical power)是什么?
解释什么是重新取样法(resampling methods)以及它们为何重要。解释它们的局限性。
哪种情况更好:有许多假阳性值,或者是有许多假阴性值?请解释。
什么是选择偏差(selection bias),它为何重要?如何避免?
举出一例说明,你如何用实验设计来回答一个有关用户行为的问题。
数据的“长”/“宽”格式有何区别?
你使用什么方法来判断一篇文章(比如报纸中的)统计数字是错的或用来支持作者观点的,而非正确的、包含对某个特殊主题的丰富实时信息的?
解释Edward Tufte的“垃圾图表(chart junk)”概念。
你如何筛选离群点(outliers),以及如果你发现了一个这样的点应该怎么处理?
你会如何使用极限值定理、蒙特卡罗模拟或数理统计(或其他任何东西)正确预测一个稀有事件的几率?
推荐引擎是什么?它如何工作?
解释什么是假阳性、假阴性。为何区分它们很重要?
你是用什么工具进行可视化?你对Tableau怎么看?R?SAS?(就绘图而言)。如何有效地在一个图表(或视频中)表现五个维度?
“一个‘真正的’数据科学家知道如何应用数学、统计,如何用适当的试验设计来建立与验证模型。有IT技术却没有统计技能的数据科学家,就像一个只知道如何建立手术刀的外科医生。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07