
数据可视化——用户行为序列图
作为一名网站的用户研究工作人员,我曾经碰到过以下问题:
深知服务器日志是一座金矿,但不知道该从哪里开始分析?
辛辛苦苦盯着电脑一天,看了1000+条日志,越看越晕,看不出规律,找不到方向…
在众多日志中,发现了一个异常动作,可是,这只是一个用户不小心点错了呢?还是由于设计导致的大量误操作呢?
经过一段时间的探索,发现将日志可视化,制作行为序列图,是一个非常直观有效的梳理思路&发现问题的方法,在此分享给大家~
1.用户行为序列:
也可以叫做“基于时间序列的用户行为”,是某一时间段内,按照时间先后顺序记录的人从事某种活动的每一步行为。
在网站,一段时间内,一个用户从进入网站到离开网站过程中的每一步行为的记录,被我们记做一条用户行为序列。
如下图,就是一条用户行为序列。
这条用户行为包含12个步长,依次进行了搜索、添词、预估等动作。
2.了解了用户行为序列,我们再来看一下行为序列图长啥样子?
刚才的那条共计12步的用户行为序列,转化为行为序列图,就是这个样子滴↓
(*其中,对每个动作都进行了数字编码&颜色标记,如:动作“search”被编码为“16”,并标记为“透明度为20%的红色”。具体操作方法请参考文章第四部分。)
是不是瞬间变得非常简单直观~
如果有100条用户行为序列,那么这幅行为序列图是这个样子的↓,大数据尽收眼底,就是这种赶脚哦~
直观~直观~还是直观
如果非要说出来的话,我总结了一下,对我们研究日志有如下帮助:
1.宏观全览大数据
2.根据需求灵活标注,便于观察规律
3.定位问题,通过颜色区分,一目了然
4.与统计数据结合,解释问题有数有据
5.大家都能看的懂
。。。(暂时想不出来了,欢迎补充)
第一步:获取数据
数据来源:通过数据后台,或请程序猿大哥帮忙跑出的日志,格式不限。
比如,它可以是这个样子的:
第二步:清洗&整理数据
1.清洗数据:
在数据提取阶段,偶尔会出现空白值的情况,建议把包含空白值的用户剔除掉,以免干扰以后的数据分析。
2.整理数据:
拿到的数据格式各异,需要进行整理才能符合我们做可视化的格式。我们需要将数据整理成这样的格式。
在EXCEL中,对动作进行数字编码,并使用数据透视表,将数据进行整理后变成如下形式:OK,数据已经整理成了我们想要的形式。
第三步:对不同动作进行颜色标记,以便通过色彩直观的了解用户行为规律和特点。
动作标记,需要根据需求再进行。对于特别关注的动作可以进行重点标记。如没有思路,希望通过看图找出一些规律,可以常识根据不同动作类型标颜色,如点击、翻页、输入等;也可以根据不同页面进行标记,如首页动作、结果列表页动作、详情页动作等,也可以根据功能模块进行标记,如查找功能,查看功能等。
*对于相似动作或者某一类型动作,可以使用同一色系的渐变色标注,这样可以使非常多的动作类型看起来更简洁,也更便于观察分析。
在excel中可以用“条件格式”进行标记,如下图:
接下来,就是对这些行为按照不同维度进行标记&排序。你会发现一些规律、一些异常慢慢开始浮现~
案例1:用户步长的直观分析
• 项目背景:
新产品上线,用户平均步长数是:11步,各模块点击率也OK,但从客户那里得到的反馈褒贬不一。PM希望了解一下问题出在哪里?
• 研究方法:
通过日志,对线上用户实际操作行为进行分析,绘制了用户行为序列图。
• 发现问题:
仅执行第一个关键动作就离开的用户占到将近一半!人们在反复尝试后,都不满意!所以,结果并不像平均步长等于11,那么令人欣慰!
案例2:用户页面切换的真实情况
项目背景:
拿到一批用户的行为日志,希望可以从中探究一些规律,同时发现现有流程中的问题
研究方法:
以页面为维度,对动作进行标记,绘制用户行为序列图。
发现问题:
挑选商品页的动作数(标记为绿色)少于预估&删除商品页的动作数(标记为黄色)。但我们希望用户精挑细选,然后快速决策,可见用户并不是按照我们的预期使用产品,里面肯定有一些体验问题,值得我们深入分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26