京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视化——用户行为序列图
作为一名网站的用户研究工作人员,我曾经碰到过以下问题:
深知服务器日志是一座金矿,但不知道该从哪里开始分析?
辛辛苦苦盯着电脑一天,看了1000+条日志,越看越晕,看不出规律,找不到方向…
在众多日志中,发现了一个异常动作,可是,这只是一个用户不小心点错了呢?还是由于设计导致的大量误操作呢?
经过一段时间的探索,发现将日志可视化,制作行为序列图,是一个非常直观有效的梳理思路&发现问题的方法,在此分享给大家~
1.用户行为序列:
也可以叫做“基于时间序列的用户行为”,是某一时间段内,按照时间先后顺序记录的人从事某种活动的每一步行为。
在网站,一段时间内,一个用户从进入网站到离开网站过程中的每一步行为的记录,被我们记做一条用户行为序列。
如下图,就是一条用户行为序列。
这条用户行为包含12个步长,依次进行了搜索、添词、预估等动作。
2.了解了用户行为序列,我们再来看一下行为序列图长啥样子?
刚才的那条共计12步的用户行为序列,转化为行为序列图,就是这个样子滴↓
(*其中,对每个动作都进行了数字编码&颜色标记,如:动作“search”被编码为“16”,并标记为“透明度为20%的红色”。具体操作方法请参考文章第四部分。)
是不是瞬间变得非常简单直观~
如果有100条用户行为序列,那么这幅行为序列图是这个样子的↓,大数据尽收眼底,就是这种赶脚哦~
直观~直观~还是直观
如果非要说出来的话,我总结了一下,对我们研究日志有如下帮助:
1.宏观全览大数据
2.根据需求灵活标注,便于观察规律
3.定位问题,通过颜色区分,一目了然
4.与统计数据结合,解释问题有数有据
5.大家都能看的懂
。。。(暂时想不出来了,欢迎补充)
第一步:获取数据
数据来源:通过数据后台,或请程序猿大哥帮忙跑出的日志,格式不限。
比如,它可以是这个样子的:
第二步:清洗&整理数据
1.清洗数据:
在数据提取阶段,偶尔会出现空白值的情况,建议把包含空白值的用户剔除掉,以免干扰以后的数据分析。
2.整理数据:
拿到的数据格式各异,需要进行整理才能符合我们做可视化的格式。我们需要将数据整理成这样的格式。
在EXCEL中,对动作进行数字编码,并使用数据透视表,将数据进行整理后变成如下形式:OK,数据已经整理成了我们想要的形式。
第三步:对不同动作进行颜色标记,以便通过色彩直观的了解用户行为规律和特点。
动作标记,需要根据需求再进行。对于特别关注的动作可以进行重点标记。如没有思路,希望通过看图找出一些规律,可以常识根据不同动作类型标颜色,如点击、翻页、输入等;也可以根据不同页面进行标记,如首页动作、结果列表页动作、详情页动作等,也可以根据功能模块进行标记,如查找功能,查看功能等。
*对于相似动作或者某一类型动作,可以使用同一色系的渐变色标注,这样可以使非常多的动作类型看起来更简洁,也更便于观察分析。
在excel中可以用“条件格式”进行标记,如下图:
接下来,就是对这些行为按照不同维度进行标记&排序。你会发现一些规律、一些异常慢慢开始浮现~
案例1:用户步长的直观分析
• 项目背景:
新产品上线,用户平均步长数是:11步,各模块点击率也OK,但从客户那里得到的反馈褒贬不一。PM希望了解一下问题出在哪里?
• 研究方法:
通过日志,对线上用户实际操作行为进行分析,绘制了用户行为序列图。
• 发现问题:
仅执行第一个关键动作就离开的用户占到将近一半!人们在反复尝试后,都不满意!所以,结果并不像平均步长等于11,那么令人欣慰!
案例2:用户页面切换的真实情况
项目背景:
拿到一批用户的行为日志,希望可以从中探究一些规律,同时发现现有流程中的问题
研究方法:
以页面为维度,对动作进行标记,绘制用户行为序列图。
发现问题:
挑选商品页的动作数(标记为绿色)少于预估&删除商品页的动作数(标记为黄色)。但我们希望用户精挑细选,然后快速决策,可见用户并不是按照我们的预期使用产品,里面肯定有一些体验问题,值得我们深入分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12