京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用大数据闪存打造融合数据平台
随着企业、服务提供商和超大型数据中心从描述性分析向预测性和规范性分析演进,结合了融合运营和分析数据管道的融合数据平台变得日益重要。大数据闪存可让数据处理平台快速访问历史数据和实时数据流,从而以较低成本创建有效的预测模型。
随着大数据从描述性分析(批量)向预测性(交互)和规范性(实时)分析演进,企业正在越来越多地使用串流数据源和历史批量数据,以提高机器的学习能力并建立预测模型。简而言之,描述性分析是为了了解事态,预测性分析是为了建立一个假设场景模型,而规范性分析是为了通过采取数据驱动型行动来影响结果。新型分析应用能够在交易发生时实时捕获它,并能影响其结果,从而带来直接的商业效益。这方面的用例包括:
反洗钱
欺诈分析
定向营销
工业互联网(IoT/IoE)
实时生产制造
医疗领域的患者数据情报
SanDisk闪迪利用新型分析应用对半导体制造数据进行实时分析。
从Lambda架构到SMACK
Lambda架构因其融合实时分析和批量分析的能力而深受喜爱。Lambda架构使用HDFS、Scalding和HBASE作为融合实时分析和批量数据管道的构建模块。但是,该架构带来的多管道复制代码和数据的开销,使得其难以大规模部署。
为了克服Lambda架构的局限性,必需配备一个能够有效处理批量和实时串流的大数据管道。全新的SMACK堆栈——Scala及其Spark、Mesos、Akka、Cassandra和Kafka生态系统便旨在实现这一点。SMACK串流已成为一个用于处理批量和串流数据的有效大型平台。
Meosphere的Infinity堆栈或MapR新近发布的Converged Data Platform等解决方案都是Lambda架构的实例。
配备SMACK(Spark、Mesos、Akka、Cassandra和Kafka)堆栈的串流架构
以下是SMARK堆栈的简要介绍:
Spark:一个快速、通用的分布式大型数据处理引擎。
Mesos:一个集群资源管理系统,在各个分布式应用之间提供高效的资源隔离和共享功能。
Akka:一个工具包和运行环境,用于在JVM上创建高并发、分布式、弹性消息驱动型应用。
Cassandra:一个分布式、高度可用的数据库,旨在处理多个数据中心的大量数据。
Kafka:一个高吞吐量、低时延的分布式消息系统,旨在处理实时数据流。
面向融合数据平台的大数据闪存
为了创建有效的预测模型,融合堆栈系统需要快速访问历史数据和实时数据流。基于闪存的数据网格可为这些新的数据驱动型架构带来巨大效益。
2015年3月,SanDisk闪迪设立了 “大数据闪存”市场类别,推出了InfiniFlash系统,它拥有极高的容量以及卓越的性能和经济性(源于低成本晶圆和全新的闪存尺寸规格)。
事实上,InfiniFlash系统之所以能成为融合数据平台架构的构建模块,其架构和性能起着至关重要的作用:
数据捕获
每秒可捕获数百万个事件,且无事件丢失
更快的批量摄取
便于扩展
使用Avro或Protobuf格式存储数据,无需ETL(提取、转换、加载)过程
通过支持Kafka等分布式消息系统消除负载
数据处理
能够有效处理实时事件和批量数据
输入存储处理,以秒和亚秒级实现时延交付
数据存储
面向数据密集型工作负载的软件定义数据构造,提供敏捷性和可扩展性
可长时间存储数个TB的数据
支持高吞吐量的批量数据存储,且满足低时延实时查询
可处理分离的数据源和“突发性”工作负载
采用无模式方式存储数据
支持HDFS和NoSQL数据库(如Cassandra、CouchDB、MemSQL、HBase等)
可借助Rackscale架构扩展至PB级
极低的年故障率(AFR)
可使用解聚/共享存储提供企业就绪度、沿袭(审计日志)、合规(依法保留等)和版本控制(维护不同的时间点副本)
专为来自HDFS/S3的故障、备份和补丁而设计
最为经济高效,低于/GB[1]
数据查询
支持亚秒级时延的实时查询
支持批量/聚集查询
支持针对HDFS和NoSQL的查询
使用InfiniFlash“大数据闪存”打造数据密集型融合数据平台的三大原因
无论您是企业还是服务提供商,以下是您应该考虑使用InfiniFlash打造融合数据平台的三大原因:
1.满足捕获、处理、存储和查询数据管道的所有要求
传统的直接附加型存储解决方案和纯HDD解决方案无法提供融合数据平台所需的大规模性能和吞吐量。此外,它们也不具备可扩展性所带来的资本支出和运营支出效益,也不具备这些平台所要求的敏捷性和企业就绪程度。
与传统硬盘相比,InfiniFlash系统的性能是它们的50倍,密度是它们的5倍,可靠性是它们的4倍,而且便于向上和向外扩展,以满足大数据应用的苛刻要求[2]。基于闪存的软件定义数据构造可让用户根据需要灵活选用多种文件系统,其中包括HDFS、Spectrum Scale、Lustre和Ceph。
2.全球支持
InfiniFlash在全球各地得到了SanDisk闪迪及其合作伙伴的支持。InfiniFlash是TSA Net Support Community的一部分,可确保满足严格的SLA协议要求。与此同时,我们的FlashStart™功能可确保其安装顺利,并提供卓越的客户体验。
3.同类最佳的生态系统
SanDisk闪迪与众多业内领先的软件开发者和硬件合作伙伴开展合作,通过同类最佳的生态系统获得更多的选择和灵活性。我们的合作伙伴包括: RedhatCeph、Nexenta、ICloudbyte以及思科、联想、戴尔、Supermicro、Quanta等厂商。同时,我们也正与开源社区开展密切合作,并通过我们的各项事业成为贡献者和思想领袖。(欲了解SanDisk闪迪对于开源SCST企业级特性所做出的贡献,请点击此处。)
结语
搭建融合数据平台是为了满足融合运营和分析管道的要求,以及随后的捕获、处理、存储和查询阶段的存储要求,一个基于大数据闪存的数据构造是融合平台理想的存储层构建模块,可让数据管道的每个阶段都受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20