京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的质量机遇
出差在外,想选择一家适合自己的酒店。只需在手机App上输入对酒店的个性化要求,手指轻轻一按,几十家甚至上百家酒店就立马一一呈现在眼前。卫生条件、服务态度、餐饮特色、地理位置……通过查看大量网友的点评和酒店分数排名,你可以在短短几分钟内方便快捷地寻找到自己心仪的酒店;出门办事,同样只需在App中下单,2~3分钟后一辆专属于你的专车就会到达指定地点。车上不仅提供了标配的矿泉水和充电器,还有司机发自内心的热情服务。
这只是我们身边依靠大数据改变生活方式的两个例子。在我们所享受到的方便快捷、优质服务的背后,就是大量以往消费者消费数据的支撑,而你对此次消费或服务的评价和反馈又将为这个大数据库增加新的信息。8月19日,国务院常务会议通过了《关于促进大数据发展的行动纲要》,提出要开发利用好大数据这一基础性战略资源。毫无疑问,我们已经进入了大数据时代。那么,大数据将给中国质量带来什么?
质量就是数据
武汉大学质量发展战略研究院早在几年前就开始了质量大数据的研究,取得了不少成果。几年来,他们对质量大数据的语义进行了分析,建立了食品、电器、通用产品三个语料库,建立了大数据监测网站和数据分析模型。
在谈到“质量”与“大数据”的关系时,院长程虹阐明了自己的观点:“质量离不开数据,质量的本质就是数据。”程虹说,无论在产品的生产环节还是在销售环节,都要依赖于大量的数据。在产品的检验检测中,离不开数据;在政府的质量监管中,同样离不开数据。
《关于促进大数据发展的行动纲要》中特别提到,要在城市建设、社会救助、质量安全、社区服务等方面开展大数据应用示范。大数据对质量的重要性已经成为很多质量人的共识。中国计量学院经管学院质量发展研究院教授周立军认为:“大数据是信息公开的基础,对于提高决策的科学性、有效性都有很大的帮助;大数据对开展质量预警的作用也很明显,可以让发出的质量预警更加精准;在建立企业信用系统过程中,大数据也被寄予厚望,能够发挥很大作用。”
缺乏消费领域的质量数据
山东大学质量管理研究中心主任温德成在谈到质量大数据时,首先讲到的是质检系统的质量大数据。“质检系统收集了很多质量数据,但这些数据还没有得到很好的整合、分析和应用。”温德成提到了质量监督抽查,“监督抽查中获得的产品质量数据很多,绝不仅仅是一个合格率、不合格率的问题。如何利用好这些数据,是大数据时代质检部门应该首先思考的问题。”温德成也介绍,在国外,掌握大量数据的其实并不是政府,而是一些社会机构。这些机构收集了大量来自市场、来自消费者的评价和反馈,这些数据正是目前我国所缺乏的。
缺乏消费领域的质量数据,这也是程虹从事质量大数据研究以来最深刻的感受。“以前,质量控制是基于生产过程的控制;但是现在,成功企业的质量控制恰恰不是基于生产导向,而是基于消费导向。也就是说,来自消费者、来自市场的数据比来自生产过程中的数据更有意义。遗憾的是,我们现在没有这部分数据,我认为这是我国质量大数据发展的一个瓶颈。如果一个企业不知道自己的客户需要什么、喜欢什么,不掌握这些质量大数据,要想做好产品,恐怕很难;同样地,如果一个政府不知道市场的真实情况到底是什么,不掌握这些质量大数据,要想做好质量监管,同样也很难。”
技术将发挥重要作用
选餐厅先看大众点评,选酒店先看酒店分数排名,选专车先看以往乘客评价……互联网上这些大量的数据就是来自消费者、来自市场。专家们认为,利用好质量大数据,不仅可以解决政府监管的很多难题,甚至可以迎来中国质量发展的一次革命性机遇。
作为一名普通消费者,程虹说自己最近喜欢上了一件事情,那就是坐Uber(优步)专车。在自己的一篇文章里,程虹详细分析了专车服务的质量大数据是如何颠覆传统的出租车运营监管机制。出租车最大的难题,无非就是信息不对称,也就是“人找不到车,车找不到人”。但是,互联网尤其是移动互联网,包括实时定位技术,使司机和乘客不用付出更多的搜索成本,就能找到彼此。因为大数据让双方之间信息透明、信息对称了。至于政府所关心的车辆服务质量问题,市场其实早就给出了答案,根本用不着政府操心,乘客的评价和结算的延迟支付,都会让专车司机不敢稍有懈怠地去提供高质量的服务。“以前让政府头疼的高峰时间打不着出租车、出租车服务质量不好等难题,在大数据时代,就这样轻松地被市场解决了。政府的角色应该从出租车的管制者变成大数据平台的提供者。”程虹认为,这是典型的质量大数据解决政府做不到的事情的应用案例。
程虹坦言,技术一小步,制度一大步。“大数据这个新技术已经来了,我们的监管制度也必须发生变化,甚至是革命性的变革与之配套,才能让新技术真正发挥出神奇的力量。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09