京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学团队的自测题
数据科学家具备很多相邻领域的技能,至少是基本技能(比如工程、开发和运维、产品管理、数学、研究、写作、商业等等),团队最容易出问题的地方之一,就是他们无法专注于那些需要动用这一整套技能才能完成的工作 团队是否拥有足够的数据,以及相应的工具来高效地处理这些数据。如果处理数据时困难重重:因为和生产系统相冲突,没有被文档化,或者收集方式前后不一致,甚至根本就不存在……这个时候,数据科学团队要及时出业绩就很难了。 团队必须能自信地报告负面结果,否则正面结果也会失去大家的信任。数据科学团队需要能“抓关键”的决策者,而这些决策者必须实事求是地面对数据和证据。
原文翻译:
虽然数据科学风头正盛,但它依然是一个比较年轻的学科,还有很多基础性的问题有待解答。数据科学家究竟是做什么的?成为数据科学家应当接受怎样的教育培训?数据科学家的职业道路是什么样的?最近,我一直在思考一个相关的问题:一个高效的数据团队的标志是什么?
说起出色的数据科学工作,我们最先想到的最重要的标准往往是“有没有大量的数据?”而我主张采用一个涵盖面更广的清单,涉及团队采用的流程、为团队提供支持的基础设施,以及团队与公司其余部分之间的界限。如果这些事情安排妥当,让团队专注于他们自己的问题,并减少围绕这些问题产生的摩擦,那么,数据科学家就会拿出优异的表现。
这种方法借鉴自joelonsoftware.com的乔尔提出的软件工程团队测试方式。你应当能快速对每个问题作出肯定或否定的回答。肯定答案越多,情况就越乐观。
这是对团队基本状况的衡量,优秀的团队可能存在其他各个方面的差异。这些问题既是关于团队本身,也是关于团队所处的生态系统,但依照我的经验,数据科学团队由于深深植根于公司内部,它必须敏锐地关注周遭的环境。你还可以换一个角度思考:假如你想加入这个团队,你会问些什么问题?
问题
1.你们绝大部分时间都在做耗时一天以上的项目吗?
2.公司有专门的工程师负责数据基础设施吗?
3.公司其他人可以不经过数据科学家,直接访问基本数据吗?
4.你们可以在不影响生产系统表现的情况下访问数据吗?
5.你们做分析的时间多于等待数据的时间吗?
6.重大架构会文档化吗?
7.测量手段会被视为最小可发布产品的一部分吗?
8.对于在收集到的数据中发现并修复错误,你们有设专门的流程吗?
9.已经完成的研究工作会被文档化并存放在某个中心位置吗?
10.团队在将工作共享出去之前,有一个常规的审查流程吗?
11.你会通过做实验去检测决策带来的影响吗?
12.你能没有后顾之忧地报告负面结果吗?
13. CEO(或其他负责人)能说出团队在当季做出的至少一个贡献吗?
14.公司在进行产品和业务规划流程时,会来咨询数据科学家吗?
优秀的数据科学工作是建立在一组基本需求层次之上的:强大且受到良好维护的数据基础设施,免受杂事干扰的环境,高质量的数据,强大的团队研究流程,能“抓关键”的开明决策者。
第一组问题(1-3)的重点是考察数据科学团队是否免受一些周边问题的干扰,通过改善基础设施、改进工具或交由专门人员处理,这些周边问题就能得到更好的解决。因为数据科学是一个跨学科领域,数据科学家具备很多相邻领域的技能,至少是基本技能(比如工程、开发和运维、产品管理、数学、研究、写作、商业等等),团队最容易出问题的地方之一,就是他们无法专注于那些需要动用这一整套技能才能完成的工作。如果大部分时间都用来响应临时请求、为简单的数据访问提供支持,或是管理数据管线,那就会挤占真正的数据科学工作。正因为他们可以很好地胜任这些周边工作,公司才需要设置严格的规定,确保他们不必去做。
没有丰富的数据,数据团队的工作就是盲目的,而第4-8个问题就考察了团队是否拥有足够的数据,以及相应的工具来高效地处理这些数据。如果处理数据时困难重重:因为和生产系统相冲突,没有被文档化,或者收集方式前后不一致,甚至根本就不存在……这个时候,数据科学团队要及时出业绩就很难了。这些问题也衡量了团队在公司里得到的信任程度;如果产品团队不能从数据科学团队那里得到好处,对建立和维护数据收集系统的重视程度就会打折扣。
团队内部流程(第9-11个问题)保证团队所做的是高质量的研究工作,这些工作能建立并维护它在公司内部得到的信任。数据科学团队所服务的对象大多没有能力去验证团队的工作成果,所以,团队自身要负责记录自己的工作,使之接受严格的同行评议,并将结果传播出去。这一点不言而喻:受控实验是数据科学武器库中最重要的一项工具,一个团队若不经常使用它,那一定是有问题的。
如果数据科学团队被强制要求,即使相关证据显示产品有问题,也必须让产品显得完美,那就是公司领导层出了问题。团队必须能自信地报告负面结果,否则正面结果也会失去大家的信任。数据科学团队需要能“抓关键”的决策者,而这些决策者必须实事求是地面对数据和证据。具体怎么衡量呢?可以看公司内部是否需要数据科学团队的参与,领导者能否快速确定,数据科学如何帮助自己的团队取得成功。最后的第12-14题试图考察这些方面。
这份清单显然是不彻底的,也并不完全适合推而广之。数据科学的界限划分仍然是人们争论不休的话题。纯粹着眼于构建数据产品的团队应该会有非常不同的观点,那些刻意模糊数据科学和工程数据界限的人应该也有不同意见。所有数据团队之间究竟有没有共同点呢?请畅所欲言,提出新的问题,或告诉我们,上述哪几个问题并不广泛适用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27