
“指标体系”这个概念是应用比较广泛的,我们从正式出版物中摘取一个定义:
指标体系,即统计指标体系,是由一系列具有相互联系的指标所组成的整体,可以从各个侧面完整地反映现象总体或样本的数量特征。
统计指标体系从其功能和作用不同,可分为描述统计指标体系,评价统计指标体系和预警统计指标体系三种。描述统计指标体系是由若干对社会经济活动状况做出完整而系统描述的基础指标所组成的。评价统计指标体系是由若干对社会经济行为结果进行比较、评估、考核,以检查其工作和综合效益的统计指标所组成。预警统计指标体系主要用于对社会经济宏观运行的监测,并根据指标值的变化,预报社会经济即将出现的不平衡状态、突发事件及某些结构性障碍等。
引自《统计学教程》(主编:王怀伟 清华大学出版社)
简而言之,指标体系即相互之间有逻辑联系的指标构成的整体,所以一个指标不能叫指标体系,几个毫无关系的指标也不能叫指标体系。概念说起来比较枯燥,举个大家比较容易理解的例子吧:
上边这张图是我从新浪财经-行情中心截取的上证指数基本指标,左上红框代表指数趋势,中间红框代表市场活跃度,右侧红框代表当天波动幅度。三个红框中的指标,基本可以构成一个最简单的指标体系,用来描述上证市场的现状,属于描述指标体系。
这一部分要告诉大家的是:指标体系的应用范围实际上很广泛,从国家到个人都可以用,请看下图:
(最后一个指标体系算是彩蛋,下次讲)
这一段主要是想告诉大家,除了那些看上去高大上的指标体系之外,生活中有很多事情都可以自己搞个指标体系来量化一下的,比如家庭财务状况啥的……
咳咳……其实你们还是打算看在工作中如何搭指标体系的对吧,下一段就说回正题。
我把搭建一个指标体系的过程总结成12个字:定目标,分指标,找数据,搭体系。
这是第一步,也是最重要的一步(好像这句话我说过很多次了),很多指标体系搭起来之后没办法持续应用,问题基本都出在这一步。
首先要明确,我们搭建一个指标体系的目的为何。通常来说,目标可能包括以下几类:
展现现有业务状况
寻找当前业务问题
预测业务的发展趋势
评估某个政策/措施/活动是否达到预期目标
找出下一步工作的方向
…………
具体目标可能会包含以上的一类或几类,需要根据目标来确定选择哪些指标。
明确目标后,需要进行指标选择,从大量的指标中选出或造出可以用于达到目标的指标。
选择指标时,建议分以下三步:
首先,寻找已有的可直接用于满足目标的指标体系,如可以找到,则在上面进行小幅度的修改,以适应目标需求;
其次,如果无法找到直接可用的指标体系(实际操作中这种情况出现比率超过50%),则参考相近指标体系,构建自己的指标。
最后,如果相近指标体系也没有(…………你在搞创新产品咩?带我一个),就要深挖问题的根源,然后自己造指标。但现实生活中碰到这种事的几率实在太低了……
指标定好之后,分类取数,利用数据来计算指标值。
数据来源无外乎以下几种:
自有产品/经营数据
政府/第三方公开数据
自行/委托第三方调研数据
购买数据
……
在此处需要注意,切忌从数据出发制造指标……
搭体系这部分,简单来说就是:要给指标及指标的变动之间提供逻辑解释,要能够以单个或多个指标的组合来给出对现实情况的解释。
上边写了这么多,我估计很多同学没看懂,没关系,我们来举个例子:
用户消费决策漏斗
多年以来,品牌营销人员通过“漏斗模型”来理解消费者决策过程——消费者从脑海中的几个潜在候选品牌开始(漏斗顶端),然后在自上而下的决策过程中逐步削减品牌的数量,最后选定一个将要购买的品牌——并在漏斗的每个关键节点处对消费者进行单向推送式的营销活动。
![]()
这个漏斗是一个典型的指标体系,里边有两类指标:漏斗每个阶段的消费者数量,以及漏斗层与层之间的转化率。前者代表规模,后者代表效率,这样通过指标之前的组合,可以找到问题的解释。
例如,本月“购买数量”指标有下降且幅度较大,通过其他指标可进行如下分析:
是否从考虑到购买的转化率下降了?
如转化率不变,是否考虑的群体数量有所减少?原因是因为品牌认知到考虑的转化率下降,还是因为品牌认知的人数变少?
如果是因为品牌认知的人数变少,那么原因是什么?
这样通过指标体系来分析问题,可以深挖问题的根源,避免头疼医头,脚疼医脚的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10