
“指标体系”这个概念是应用比较广泛的,我们从正式出版物中摘取一个定义:
指标体系,即统计指标体系,是由一系列具有相互联系的指标所组成的整体,可以从各个侧面完整地反映现象总体或样本的数量特征。
统计指标体系从其功能和作用不同,可分为描述统计指标体系,评价统计指标体系和预警统计指标体系三种。描述统计指标体系是由若干对社会经济活动状况做出完整而系统描述的基础指标所组成的。评价统计指标体系是由若干对社会经济行为结果进行比较、评估、考核,以检查其工作和综合效益的统计指标所组成。预警统计指标体系主要用于对社会经济宏观运行的监测,并根据指标值的变化,预报社会经济即将出现的不平衡状态、突发事件及某些结构性障碍等。
引自《统计学教程》(主编:王怀伟 清华大学出版社)
简而言之,指标体系即相互之间有逻辑联系的指标构成的整体,所以一个指标不能叫指标体系,几个毫无关系的指标也不能叫指标体系。概念说起来比较枯燥,举个大家比较容易理解的例子吧:
上边这张图是我从新浪财经-行情中心截取的上证指数基本指标,左上红框代表指数趋势,中间红框代表市场活跃度,右侧红框代表当天波动幅度。三个红框中的指标,基本可以构成一个最简单的指标体系,用来描述上证市场的现状,属于描述指标体系。
这一部分要告诉大家的是:指标体系的应用范围实际上很广泛,从国家到个人都可以用,请看下图:
(最后一个指标体系算是彩蛋,下次讲)
这一段主要是想告诉大家,除了那些看上去高大上的指标体系之外,生活中有很多事情都可以自己搞个指标体系来量化一下的,比如家庭财务状况啥的……
咳咳……其实你们还是打算看在工作中如何搭指标体系的对吧,下一段就说回正题。
我把搭建一个指标体系的过程总结成12个字:定目标,分指标,找数据,搭体系。
这是第一步,也是最重要的一步(好像这句话我说过很多次了),很多指标体系搭起来之后没办法持续应用,问题基本都出在这一步。
首先要明确,我们搭建一个指标体系的目的为何。通常来说,目标可能包括以下几类:
展现现有业务状况
寻找当前业务问题
预测业务的发展趋势
评估某个政策/措施/活动是否达到预期目标
找出下一步工作的方向
…………
具体目标可能会包含以上的一类或几类,需要根据目标来确定选择哪些指标。
明确目标后,需要进行指标选择,从大量的指标中选出或造出可以用于达到目标的指标。
选择指标时,建议分以下三步:
首先,寻找已有的可直接用于满足目标的指标体系,如可以找到,则在上面进行小幅度的修改,以适应目标需求;
其次,如果无法找到直接可用的指标体系(实际操作中这种情况出现比率超过50%),则参考相近指标体系,构建自己的指标。
最后,如果相近指标体系也没有(…………你在搞创新产品咩?带我一个),就要深挖问题的根源,然后自己造指标。但现实生活中碰到这种事的几率实在太低了……
指标定好之后,分类取数,利用数据来计算指标值。
数据来源无外乎以下几种:
自有产品/经营数据
政府/第三方公开数据
自行/委托第三方调研数据
购买数据
……
在此处需要注意,切忌从数据出发制造指标……
搭体系这部分,简单来说就是:要给指标及指标的变动之间提供逻辑解释,要能够以单个或多个指标的组合来给出对现实情况的解释。
上边写了这么多,我估计很多同学没看懂,没关系,我们来举个例子:
用户消费决策漏斗
多年以来,品牌营销人员通过“漏斗模型”来理解消费者决策过程——消费者从脑海中的几个潜在候选品牌开始(漏斗顶端),然后在自上而下的决策过程中逐步削减品牌的数量,最后选定一个将要购买的品牌——并在漏斗的每个关键节点处对消费者进行单向推送式的营销活动。
![]()
这个漏斗是一个典型的指标体系,里边有两类指标:漏斗每个阶段的消费者数量,以及漏斗层与层之间的转化率。前者代表规模,后者代表效率,这样通过指标之前的组合,可以找到问题的解释。
例如,本月“购买数量”指标有下降且幅度较大,通过其他指标可进行如下分析:
是否从考虑到购买的转化率下降了?
如转化率不变,是否考虑的群体数量有所减少?原因是因为品牌认知到考虑的转化率下降,还是因为品牌认知的人数变少?
如果是因为品牌认知的人数变少,那么原因是什么?
这样通过指标体系来分析问题,可以深挖问题的根源,避免头疼医头,脚疼医脚的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07