
数据分析在产品优化中究竟会带来怎样的力量
火爆全球的 Instagram 的初衷也不是图片社交应用,它的前身是一款包含了社交、签到等各种功能的失败的应用,但是 Instagram 最终通过数据分析找到了其用户增长关键点,获得了爆发式增长。暗藏潜力的功能是不是正在被你默默忽视?数据分析在产品优化中究竟会带来怎样的力量?如何才能像Instagram一样找到用户增长关键点?
1. 一款失败的全能应用
Instagram 的 CEO Kevin Systom 在 Quora 上分享产品起源时说到,他们最早开发的是一款基于位置的社交应用,叫做 Burbn,简单来说就是:
用户在特定位置签到并制定规划,同时还可以赚取点数,当然还包含分享聚会照片的功能。
这是 Burbn 的产品截图:
但这是一款失败的全能应用,因此你可能都没有听说过,它包括了签到/游戏/图片分享/社交媒体等功能,正如联合创始人 Krieger 说的那样:在我们尝试去解释我们所做的事情的时候,对方总是很茫然。
于是他们做了一个决定:专注于照片共享,停止其他所有的功能。一个简单的照片共享应用被规划出来,这个产品就是后来火爆全球的 Instagram。
2. 产品数据中的机遇
但是,这不是一个简单的决定。
Kevin 和 Krieger 在对 Burbn 的数据分析中发现,用户虽然不用 Burbn 来进行签到,但是附带的照片共享功能却十分受欢迎,并引起了疯狂地发布和共享。他们便开始注意到用户倾向于使用 Burbn 来分享照片的现象,为此研究了当下的流行应用。
他们很快锁定了 Hipstamatic 和 Facebook :Hipstamatic 看起来很酷,滤镜十分优秀,但很难使用它进行照片分享;而 Facebook 是社交网络之王,但它的 app 同样没有一个过得去的照片共享功能。Systrom 觉得在 Hipstamatic 和 Facebook 之间应该有一个点可以做。
于是他们最终只留下了 Burbn 的照片、评论和按赞功能,并增加了滤镜。
几个月后,专注于图片社交分享的 Instagram 正式推出,上线一天获得 25,000 个用户,三个月后这个数字达到100 万。
Systrom 最初发表在 Instagram 的照片:
也是这一年10月,iPhone 4 发布,其优质的摄像头使得用户很愿意拍摄并分享照片,于是 Instagram 的用户量继续爆发式地增长。
这是在 Instagram 上用滤镜修饰过的图片:
3. 先做“简单而重要”的事情
在 Instagram 五周年的时候,创始人们分享了他们的做事原则——先做简单的事:
这个原则在最开始的时候已经成型了,因为当时我们只有两个人,因此每次面对新挑战的时候,我们都需要确定一个最快速,最简单的解决办法。
如果当时我们对一切事情都作长远考虑,那么我们可能会因为什么也做不了而瘫痪。
选择最重要的问题去解决,并且选择最简单的解决方法,这样才能支撑起我们指数式的增长。
但是,怎样确定最重要的事情呢?这时就需要对数据进行即时的分析和判断,找到用户增长的关键点。(增长黑客的力量:这10家公司凭什么估值过百亿?)
相比于 Burbn 时期的全能定位,Instagram 的追求很简单,产品思路很清楚,就是让用户能快速发布一张好看的图片。
这是Instagram 早期欢迎页面:
同时 Instagram 团队下了很大功夫提升用户体验,在用户选择滤镜时,就已经开始上传图片,而不是等用户按下上传按钮之后,以此缩短最终上传步骤所需时间;与此同时第一个版本中,点击三次就可以发布照片,用最少的步骤分享到其他社交网站,堪称简洁的典范。
他们把功能单一化的意义体现得淋漓尽致,以至于整体的布局和功能,从开始到现在并没有很大的改变。
这个是Instagram 初期页面:
正如 Instagram 设计主管 Ian Silber 所说:
“我向人们展示 Instagram 的第一张产品截图,然后,他们会奇怪,我们到底做了些什么?我们忠实于 Instagram 的原版,但是,我们改变了一切——就像是为一辆移动中的汽车添加了新的引擎和部件。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18