京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:掌握话语权要关注基础技术
《2015年中国大数据交易白皮书》显示,预计到2020年,中国大数据产业市场规模将是2014年规模的10倍,由2014年的767亿元扩大至8228.81亿元。全球大数据市场高速增长,已经成为全球IT领域中的增长亮点。在中国尽管大数据仍处于起步阶段,但各地发展大数据的积极性较高,行业应用推广迅速。在这个热情高涨的大数据市场,中国要想进一步释放大数据的价值,掌控大数据的技术话语权,必须关注大数据的基础技术。
眼下,虽然中国对大数据的热情很高,但我们必须看到目前中国在大数据关键技术上的布局其实是有所欠缺的。目前世界各国都在抢先布局大数据的关键技术、基础技术,因为从目前的技术架构和技术基础来看,用现成的技术来解决大数据的问题还面临诸多的挑战。不久前,IBM中国研究院院长沈晓卫接受《中国电子报》记者采访时坦言,我们要想真正从数据中获得洞察、获得价值,需要更高效、更智能的数据处理和分析平台,以及相应的工具。其一,传统的IT技术,需要有更大的突破。比如物联网处理系统需要一秒钟处理上百万信息,比如对非结构化的数据进行存储和处理,需要新的技术。其二,需要引入物理模型来模拟物理世界。比如对天气的理解,比如对疾病的风险控制的理解,比如对智能工厂的理解,都需要构建大量的物理模型,并挑出更合适的模型,对物理世界作出更好的模拟和理解。其三,需要更强大的认知计算,要求认知计算有更强大的自然语言的能力、更强的机器学习能力等。
基于对市场需求和技术趋势的判断,事实上国外IT巨头在大数据的关键技术上投入了大量人力、物力和财力来进行关于大数据关键技术的研发。我们大家都知道现在谈及大数据的利用,一定都会提及开源的Hadoop技术,事实上对于大数据的利用仅仅依靠Hadoop是不够的。我们朝向产业互联网推进时面临非常多的挑战,我们的计算架构、计算模式也面临很大挑战。比如传统的计算机分析和数据整理方式,首先是收集数据,然后储存在数据库程序中,然后在收到请求后搜索这些数据。这是一个高效的处理方式,但却是一个紧绷的结构,而且通常会造成时间的浪费。而在流计算当中,高级软件的运算法则在接收流数据时就开始对其进行分析。流计算在实时数据分析领域具有巨大的应用空间,包括天气、江河、电力、股票交易等等。但目前,中国的IT产业在流计算方面并没有太多的话语权。面对大数据的挑战,有非常多类似流计算的新技术,关键技术都需要中国IT企业做更多的布局,只有这样,我们的大数据发展,大数据利用才不会变成“无根”的产业。
事实上不仅仅是在平台和工具等基础技术维度,中国要想在大数据领域拥有更大的话语权,更好地释放数据的价值,还必须在数据模型的维度、在数据科学家等维度进行大量的投入。目前全球前1500强的企业都有自己的数据科学家。据国外职业人士社交网站LinkedIn公布的2014年最受雇主喜欢、最炙手可热的25项技能,统计分析和数据挖掘技能位列榜首。研究机构Gartner预测,2015年,全球将新增440万个与大数据相关的工作岗位,25%的组织将设立首席数据官职位。
不久前,阿里云宣布启动阿里云大学合作计划AUCP,联合国内8所高校开设云计算与数据科学专业方向,目标是到大学里培养大数据的科学家。应该说阿里巴巴是国内企业中“大数据意识”觉醒比较早的企业。对于大数据这样的应用学科的人才培养,需要充分借助企业的资源。在国外企业中,IBM对于全球大数据的人才培养投入了巨大资源,已与全球1000多所大学一同合作,构建一个输送数据科学家的“通道”。
推进大数据应用需要大量的数据科学家,需要教育体系更重视大数据的人才培养,需要更多的领先企业参与进来,仅仅有阿里巴巴或者是IBM是远远不够的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16