京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师:为什么说大数据与客户分析之间有所差异
大数据预测与传统的基于抽样的预测不同之处在于,其基于海量历史数据和实时动态数据,发现数据与结果之间的规律,并假设此规律会延续,捕捉到变量之后进行预测。一个领域本身便有相对稳定的规律,大数据预测才有机会得到应用。
大数据,这个术语已被过度使用,同样也被过度误解。现在我们陷入了这样一个怪圈:每个人都在谈论这件事,每个人都认为别人在做这件事,所以每个人都说他们正在做这件事。
下图的谷歌趋势曲线向我们展示了在过去几年里每个人都在谈论的大数据的搜索量变化情况:
很多人可以就大数据的话题夸夸其谈,但很少有人会意识到大数据对于他们的业务的真正意义。许多人在讨论如何管理大数据,但只有很少的人会仔细考虑如何去使用大数据。也就是说,简而言之,大数据和客户分析之间存在着较大的差距。事实上,在Gartner最近的调查报告中,超过50%的受访企业表示他们不知道如何从大数据中获取价值 。
到目前为止,大部分的讨论都是关于大数据的IT问题的。这些问题的重点是,应该如何对体积巨大的数据进行合理的组织、标记、清理并把它存储起来。就大数据的话题我们可以讨论的内容很多,比如数据存取、数据安全、数据的存储和吞吐量等等…… 这些都是很重要的内容。但如果你是一个公司的老板,这些应该是你最不需要担心的事情。你真正需要担心的是这里边有没有一些东西可以促进你的客户关系管理。对于大多数公司(这里指的是Adobe数字营销的客户)来说,大数据的目的是让你对你的客户可以有更深入的了解。
一个很不好的现象是,当业内的人谈及大数据时,往往都是专注于数据量的大小。数据量的大小是无关紧要的;大规模数据的问题已经基本得到解决。重要的是,企业可以用这些数据来做什么。如果你不使用这些数据来产生驱动营销和业务决策的洞察力,那么即使你使用了非常有效的方式来存储了海量的数据,这对于你的企业也不会有什么促进作用。需要明确的是:能够正常运行数据查询是一回事,而能够为你的企业产生驱动战略规模化的见解则是另一回事。
Adobe是大数据技术的深度用户,管理着数十PB的数据,30分钟内处理的交易比整个信用卡处理网络一天内处理的交易还要多,运行处理大量的数据这并不能算是Adobe的目标,Adobe的真正目标是帮助客户获得所需要的可操作的规模化的见解。
仅有少数真正懂得大数据、能从数以PB计的数据量中获取到见解的分析师是不够的。公司里所有人都应该把客户数据使用起来。比如,营销人员和呼叫中心都应该能够基于前期客户与公司的互动预测客户的需求。 如果那丰富的客户与品牌的互动数据不能在公司中得到充分利用,那么这些数据的意义就不能真正体现出来。
所有的这一切意味着你需要使用收集到的数据更好地了解客户,并不断优化客户体验。这可能意味着你需要为每个客户提供一些不同的东西。这其中的关键是要想清楚如何利用大数据为每个客户量身定制有意义的信息。例如,联想采用客户分析以了解客户在数字属性与呼叫中心之间的访问过程 ,从而为客户提供更贴切的用户体验。这将产生可衡量的有利于促进业务发展的积极影响。
大数据重要不?当然重要。但它不是你的业务是否会取得成功的决定性指标。你对你的客户的认识才是。客户分析可帮助你优化客户体验使它变得更简单更流畅。简单而流畅的客户服务,可以让你赢得客户的心并且他们会成为你品牌的代言人……这才是你的数据的真正的用途。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27