
数据分析师:为什么说大数据与客户分析之间有所差异
大数据预测与传统的基于抽样的预测不同之处在于,其基于海量历史数据和实时动态数据,发现数据与结果之间的规律,并假设此规律会延续,捕捉到变量之后进行预测。一个领域本身便有相对稳定的规律,大数据预测才有机会得到应用。
大数据,这个术语已被过度使用,同样也被过度误解。现在我们陷入了这样一个怪圈:每个人都在谈论这件事,每个人都认为别人在做这件事,所以每个人都说他们正在做这件事。
下图的谷歌趋势曲线向我们展示了在过去几年里每个人都在谈论的大数据的搜索量变化情况:
很多人可以就大数据的话题夸夸其谈,但很少有人会意识到大数据对于他们的业务的真正意义。许多人在讨论如何管理大数据,但只有很少的人会仔细考虑如何去使用大数据。也就是说,简而言之,大数据和客户分析之间存在着较大的差距。事实上,在Gartner最近的调查报告中,超过50%的受访企业表示他们不知道如何从大数据中获取价值 。
到目前为止,大部分的讨论都是关于大数据的IT问题的。这些问题的重点是,应该如何对体积巨大的数据进行合理的组织、标记、清理并把它存储起来。就大数据的话题我们可以讨论的内容很多,比如数据存取、数据安全、数据的存储和吞吐量等等…… 这些都是很重要的内容。但如果你是一个公司的老板,这些应该是你最不需要担心的事情。你真正需要担心的是这里边有没有一些东西可以促进你的客户关系管理。对于大多数公司(这里指的是Adobe数字营销的客户)来说,大数据的目的是让你对你的客户可以有更深入的了解。
一个很不好的现象是,当业内的人谈及大数据时,往往都是专注于数据量的大小。数据量的大小是无关紧要的;大规模数据的问题已经基本得到解决。重要的是,企业可以用这些数据来做什么。如果你不使用这些数据来产生驱动营销和业务决策的洞察力,那么即使你使用了非常有效的方式来存储了海量的数据,这对于你的企业也不会有什么促进作用。需要明确的是:能够正常运行数据查询是一回事,而能够为你的企业产生驱动战略规模化的见解则是另一回事。
Adobe是大数据技术的深度用户,管理着数十PB的数据,30分钟内处理的交易比整个信用卡处理网络一天内处理的交易还要多,运行处理大量的数据这并不能算是Adobe的目标,Adobe的真正目标是帮助客户获得所需要的可操作的规模化的见解。
仅有少数真正懂得大数据、能从数以PB计的数据量中获取到见解的分析师是不够的。公司里所有人都应该把客户数据使用起来。比如,营销人员和呼叫中心都应该能够基于前期客户与公司的互动预测客户的需求。 如果那丰富的客户与品牌的互动数据不能在公司中得到充分利用,那么这些数据的意义就不能真正体现出来。
所有的这一切意味着你需要使用收集到的数据更好地了解客户,并不断优化客户体验。这可能意味着你需要为每个客户提供一些不同的东西。这其中的关键是要想清楚如何利用大数据为每个客户量身定制有意义的信息。例如,联想采用客户分析以了解客户在数字属性与呼叫中心之间的访问过程 ,从而为客户提供更贴切的用户体验。这将产生可衡量的有利于促进业务发展的积极影响。
大数据重要不?当然重要。但它不是你的业务是否会取得成功的决定性指标。你对你的客户的认识才是。客户分析可帮助你优化客户体验使它变得更简单更流畅。简单而流畅的客户服务,可以让你赢得客户的心并且他们会成为你品牌的代言人……这才是你的数据的真正的用途。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11