
数据分析师:为什么说大数据与客户分析之间有所差异
大数据预测与传统的基于抽样的预测不同之处在于,其基于海量历史数据和实时动态数据,发现数据与结果之间的规律,并假设此规律会延续,捕捉到变量之后进行预测。一个领域本身便有相对稳定的规律,大数据预测才有机会得到应用。
大数据,这个术语已被过度使用,同样也被过度误解。现在我们陷入了这样一个怪圈:每个人都在谈论这件事,每个人都认为别人在做这件事,所以每个人都说他们正在做这件事。
下图的谷歌趋势曲线向我们展示了在过去几年里每个人都在谈论的大数据的搜索量变化情况:
很多人可以就大数据的话题夸夸其谈,但很少有人会意识到大数据对于他们的业务的真正意义。许多人在讨论如何管理大数据,但只有很少的人会仔细考虑如何去使用大数据。也就是说,简而言之,大数据和客户分析之间存在着较大的差距。事实上,在Gartner最近的调查报告中,超过50%的受访企业表示他们不知道如何从大数据中获取价值 。
到目前为止,大部分的讨论都是关于大数据的IT问题的。这些问题的重点是,应该如何对体积巨大的数据进行合理的组织、标记、清理并把它存储起来。就大数据的话题我们可以讨论的内容很多,比如数据存取、数据安全、数据的存储和吞吐量等等…… 这些都是很重要的内容。但如果你是一个公司的老板,这些应该是你最不需要担心的事情。你真正需要担心的是这里边有没有一些东西可以促进你的客户关系管理。对于大多数公司(这里指的是Adobe数字营销的客户)来说,大数据的目的是让你对你的客户可以有更深入的了解。
一个很不好的现象是,当业内的人谈及大数据时,往往都是专注于数据量的大小。数据量的大小是无关紧要的;大规模数据的问题已经基本得到解决。重要的是,企业可以用这些数据来做什么。如果你不使用这些数据来产生驱动营销和业务决策的洞察力,那么即使你使用了非常有效的方式来存储了海量的数据,这对于你的企业也不会有什么促进作用。需要明确的是:能够正常运行数据查询是一回事,而能够为你的企业产生驱动战略规模化的见解则是另一回事。
Adobe是大数据技术的深度用户,管理着数十PB的数据,30分钟内处理的交易比整个信用卡处理网络一天内处理的交易还要多,运行处理大量的数据这并不能算是Adobe的目标,Adobe的真正目标是帮助客户获得所需要的可操作的规模化的见解。
仅有少数真正懂得大数据、能从数以PB计的数据量中获取到见解的分析师是不够的。公司里所有人都应该把客户数据使用起来。比如,营销人员和呼叫中心都应该能够基于前期客户与公司的互动预测客户的需求。 如果那丰富的客户与品牌的互动数据不能在公司中得到充分利用,那么这些数据的意义就不能真正体现出来。
所有的这一切意味着你需要使用收集到的数据更好地了解客户,并不断优化客户体验。这可能意味着你需要为每个客户提供一些不同的东西。这其中的关键是要想清楚如何利用大数据为每个客户量身定制有意义的信息。例如,联想采用客户分析以了解客户在数字属性与呼叫中心之间的访问过程 ,从而为客户提供更贴切的用户体验。这将产生可衡量的有利于促进业务发展的积极影响。
大数据重要不?当然重要。但它不是你的业务是否会取得成功的决定性指标。你对你的客户的认识才是。客户分析可帮助你优化客户体验使它变得更简单更流畅。简单而流畅的客户服务,可以让你赢得客户的心并且他们会成为你品牌的代言人……这才是你的数据的真正的用途。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10