京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用队列数据分析来留住你的用户
在数据分析的世界中,队列分析因为看似非常复杂而总是被人忽视。这一次让我们来看一看队列分析究竟能为我们提供什么?以及怎样进行这种分析。
在种种数据分析工具中,有一种工具经常不被人使用,那就是队列分析。虽然队列分析是一种非常强大的分析方式,但因为它看起来非常复杂而总是被人放在一边。然而,队列分析能够为我们提供大量的有效结果,今天就让我们深入浅出的了解一下它。
让我们首先来解释一下什么是队列分析。队列分析能够帮助你在特定的时间段对具有共同特征的一组人群的行为动作进行分析。它能够让你通过更加精密的“显微镜”来观察数据,将一个大难题拆分成细碎的拼图,然后在每块拼图上展示出细节。
例如,对于每一个开发者或者分析师来说,他们最想知道的数据分析结果之一就是应用的保留率。因为你有很多种办法可以让人们去下载你的应用,但是你会非常希望知道有多少人最终保留了你的应用。保留率是一个关键的指标。正如人们所说的:“留住用户而不是获得用户才意味着真正的增长。”在这种情况下,你需要分析安装移动应用的用户数据,以及在5天内与该应用进行了交互的用户数据,用来测量保留率。
这些信息一般会以如下的表格形式显示:
在上表中,558位用户在1月3日安装了应用,在其中有30%的用户在一天之后回来访问了这个应用,有23%的用户在两天以后访问了这个应用,有24%是在3天以后,21%是在4天以后,而25%是在5天之后。
这种类型的数据让人很难清楚地理解数字之间的关系并且作出快速的推断。作为一名分析师,你会希望通过这5天的数字了解保留率的趋势以及在日期与日期之间的趋势,比如在安装以后第1天与第3天之间的保留情况。
此外,你还需要测量保留用户与安装用户的总数量。这些数字对于队列分析是非常有用的,如果保留率比较低但安装用户很高,那么这显然是不希望看到的。
假设我们想看到应用安装后第1天、第3天和第5天的保留数量,那么通过队列分析,数据就可以以下面的视图总结并展示出来:
上面的图表展示了所选定时间段中每天的队列数据变化情况。这3个队列分别代表第1天、第3天和第5天。
图表中竖条的浅色与深色分别代表了用户总数与保留用户的数量。粉色竖条显示的是到第1天日末当天队列数据的变化情况。绿色显示的是从第1天到第3天的变化情况。而紫色则显示的是从第3天到第5天的每日队列数据变化情况。在第1天也就是1月3日总共安装用户为558人,而留存用户则是深粉色显示的167人。绿色图表的显示也是一致的。在第3天,总用户是第1天留存的167人,而在这167人中只有135个人保留住了,因此显示出一个向下的趋势。
在图标顶部的曲线显示的是趋势分析。粉色、绿色和蓝色的平滑曲线分别代表着第1天、第3天和第5天的保留率队列变化情况,围绕着曲线的3种颜色的带状区域是保留率的可信区间。
分析结果:
用户保留率出现了明显的下降趋势。在应用安装的第3天之后出现了急剧的下降,下降原因需要进一步探讨。
1月3日获取的用户在第3天到第5天之间表现出了最高的保留率,几乎没有下降,和其他区间的队列数据完全不同,需要深入的了解1月3日所获取用户的类型以及特点。此外,用户总量在这个阶段也是最高的。
在1月4日获取的用户在第5天的保留率相较于第1天与第3天都要低。保留率低于可信区间的下限。
1月6日获取的用户的第3天保留率明显高于其他区间。23%的保留率超过了可信区间的上限。
数据显示1月17日的用户获取数量出现了一次高峰。
通过应用队列分析我们可以了解到很多信息,能够获取总体趋势、特定区间的趋势以及与其它信息包括实施营销策略与获取用户策略相混合时的各种趋势,能够帮助我们得出合理的结论,进一步制定更有效的用户获取与用户保留策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07