
CIO需要弄懂大数据的5个关键命题
企业大数据分析始于谷歌、雅虎和Twitter等互联网公司,与这些互联网公司类似,传统企业也迫切需要挖掘用户数据的价值,提高企业的竞争力和决策质量。以下是关于大数据CIO需要了解的五件事:
一、大数据的商业价值
今天,大数据分析所需的数据源和数据已经极大丰富并且在高速增长中,即使你是一家小企业,也可能会拥有大数据,一家小的对冲基金公司可能拥有数以TB计的数据,根据麦肯锡公司的一份报告,未来几年,包括医疗、公共服务、零售和制造业的企业都将从大数据分析中受益。
Hortonworks的首席技术官Eric Baldeschwieler认为,大家一提到大数据部署就想到Hadoop,Hadoop方案确实适用于各种客户:通过收集、分析交易数据,企业能更好地了解客户的需求和倾向,同时也能优化产品和服务创新,更快响应和处置紧急问题。
二、大数据的来源
有些CIO会认为企业里的数据还不够多,不足以构成大数据分析,其实数据就像海绵里的水,只要你愿意挤。Baldeschwieler认为很多时候大数据通常就是那些被丢弃到垃圾堆和回收站里的“垃圾”数据。
比方说,你的服务器日志就是很好的大数据分析素材。服务器记录所有访问你网站的访客和他们的访问行为。跟踪分析这些数据你将知道客户正在找什么,虽然日志数据分析不是什么新鲜事了,但其实分析的“粒度”还可以进一步精细到你之前无法想象的程度。
大数据的另一个重要来源是传感器,业界分析师已经鼓吹了多年的物联网,其实物联网说白了就是通过传感器把物理世界给数字化了,接入互联网的大量传感器将产生持续的大数据流,智能交通、智能电网甚至智能家电都将是大数据源,分析这些数据能大大提升相关企业的运营效率和决策质量。
三、大数据需要新型人才
根据Forrester Research的分析师James Kobielus认为:当部署完大数据分析系统后,企业接下来面对的最大挑战就是找到合适的人才使用这个系统分析数据。大数据非常依赖数据建模,企业需要补充各种类型的“数据科学家”,例如统计模型师、文本挖掘专家以及语义分析领域的专家。这些数据科学家需要具备的新技能与过去的商业智能专家的技能还有所不同。
大数据人才目前严重短缺,根据麦肯锡的报告,到2018年,美国市场还将短缺14-19万名高级数据分析人才,以及150万懂得使用大数据分析进行决策的经理人和分析师。
CIO需要具备的另外一个大数据技能是整合大量硬件来存储和分析数据,你可能还需要从当地大学或者研究机构招聘一些超级计算机管理员。
四、大数据无需事先规划
那些习惯缜密规划企业数据仓库(EDW)的CIO看到这里应该松口气,大数据的优势就是可以先收集,再考虑如何分析。
在数据仓库中,你必须在导入数据前先制定好数据架构。这意味着在导入数据前你必须知道你要什么,因为你在压缩数据的时候也会损失粒度,而且如果你改变主意了,或者想进行历史分析,这些数据架构就成了你给自己设置的障碍。
而大数据的存储库可以看做是一个大的垃圾场,你可以先把各种数据一窝蜂堆进去,然后再进行分析,很多企业在大数据分析之前都不是很清楚他们能发现什么,因此大数据在数据导入上的自由对于企业应用而言有着非同一般的意义。
五、大数据不仅仅是Hadoop
人们一说到大数据,就会提到Hadoop数据分析平台,Hadoop确实炙手可热,很多企业都在Hadoop方案上投入资金和人力,但实际上你还有其他软件选择。
法务研究机构巨头LexusNexus最近就无私地开源了其分析平台——HPCC系统。MarkLogic也公开了其非结构化数据库MarkLogic Server,可用于大数据分析。此外,Splunk的搜索引擎也在获得关注,可以用于搜索和分析机器数据,例如服务器日志。无论你希望从日志中提取何种数据,Splunk都很有可能帮上忙。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11