
23年大数据揭示惊人事实:10次历史大顶均有解套机会
1990年底,中国股市开业,在短短的25年间,中国股市从最初的8只股票,发展到现今的2780只股票,承载了几代人的梦想,亦记录了无数人的悲喜人生。25年其实很短,对于人来说,才刚刚大学毕业,正值青年,敢想敢做,亦敢哭敢笑;但对于A股投资者来说,或许这25年,却已经如经历了几世轮回一般,上过天堂,亦下过地狱;有许多人借由A股发家致富,亦有更多的人倾家荡产,人生断魂!或许这有些过于危言耸听,但却绝不是无稽之谈,这对于2015年6月12日进入A股市场的投资者来说,更是刻骨铭心。
数据统计显示,2015年6月12日至今,上综指由5178点,跌至3100多点,A股市值由76万亿跌至46万亿,2个多月时间,30万亿财富灰飞烟灭。8成的个股下挫幅度超过30%,44%的股票跌幅超过50%,股价断崖式下挫,跌停属于家常便饭。对于新进入A股的投资者来说,这两个月宛如噩梦,甚至发誓此生不再踏入A股;但对于浸淫A股十多年甚至是伴随着A股成长的投资者来说,会说:果然如此,熊长牛短!
此文,不会对中国资本市场建设进行评论,亦不会对A股市场的发展做出预测,此处只为了寻找一个真相:上综指高位买入股票,有生之年,还可以解套吗?为了回答这个问题,此处,将针对上综指20多年间的曾经被视为A股投资者绝望的山顶的点位下,全部A股后市的走势进行完整的统计,为各位呈现数据事实下的真相。
数据统计思路解析:
1、 买入持有策略。假设每一波上综指的高位买入A股,随后持股不动,据此统计买入点至对应时间点内的区间涨跌幅(收益率)。
2、 历史(天):买入点持有到对应日期经历的天数。
3、 日期:上综指出现高位的日期。
4、 上涨数量:买入日期点至统计日期点的区间涨跌幅大于0的股票数量。
5、 上市A股数量:时间点上A股上市的股票总数量。
6、 上涨概率:上涨概率=上涨数量/上市A股数量。
7、 上涨平均收益率:区间点内大于0的涨跌幅的算术平均值。
8、 下跌平均收益率:区间点内小于0的涨跌幅的算术平均值。
9、 加权风险收益率:=上涨平均收益率*上涨概率+下跌平均收益率*(1-上涨概率)。
10、 收益率计算统一进行前复权处理。
11、 解套点:上涨概率超过80%,则可以认为随机买入股票至该时间点,依然有大概率解套机会。
第一顶:1428
买入点:1992-5-25
解套点:2001-6-15,2007-10-16,2007-10-16,20019-8-4,2015-6-12,2015-9-1
如果是第一代股民,在1992-5-25,只有25只可供选择的股票,在该时间点随机买入股票,将大概率被套,接下来的277个日夜里,只有40%的概率不被套,如果持股到1994年,基本上76%的概率将被套牢,如果至此,你放弃治疗,退出江湖不再留心A股股价,并持续持股不动,那么经历3308个日夜,你将进入大概率解套时间点,并获取加权风险收益率达433.82%,随后如果依然不动如山,持股到2015年6月12日,此时,基本上100%解套,加权风险收益率是1972.83%,23年期间年化复合增长率14.09%。
第二顶:1444
买入点:1993-2-26
解套点:2001-6-15,2007-10-16,2015-6-12,2015-9-1
在1993-2-26,第一次大概率解套点要到2001-6-15,如果持续持股到2015-6-12的22年期间,年复合增长率为12.35%。第三顶:1041
买入点:1994-9-14
解套点:1997-5-12,1998-6-4,1999-6-30,2001-6-15,2004-4-7,2007-10-16,2009-8-4,2015-6-12
在1994-9-14买入,基本上不会套,如果持续持股到2015-6-12,21年期间,年化复合增长率13.7%。第四顶:1510
买入点:1997-5-12
解套点:2001-6-15,2007-10-16,2009-8-4,2015-6-12,2015-9-1
在1997-5-12买入,第一次解套在2001-6-15,如果持续持股到2015-6-12,18年期间,年化复合增长率12.7%。第五顶:1422
买入点:1998-6-4
解套点:2001-6-15,2007-10-16,2009-8-4,2015-6-12,2015-9-1
在1998-6-4买入,第一次解套在2001-6-15,如果持续持股到2015-6-12,17年期间,年化复合增长率13.14%。第六顶:1756
买入点:1999-6-30
解套点:2001-6-15,2007-10-16,2009-8-4,2015-6-12,2015-9-1
在1999-6-30买入,第一次解套在2001-6-15,如果持续持股到2015-6-12,16年期间,年化复合增长率12.94%。第七顶:2212
买入点:2001-6-15
解套点:2015-6-12,2015-9-1
在2001-6-15买入,第一次解套在2015-6-12,14年期间,年化复合增长率11.73%。第八顶:1783
买入点:2004-4-7
解套点:2007-10-16,2009-8-4,2015-6-12, 2015-9-1
在2004-4-7买入,基本不会被套,如果持续持股到2015-6-12,11年期间,年化复合增长率20.69%。第九顶:历史之最6124
买入点:2007-10-16
解套点:2015-6-12
2007-10-16,6124,这是多少A股投资者的梦魇啊,随后的一年期间,84%的个股跌幅超过了50%;70%的个股跌幅超过60%;40%的股票跌幅超过70%;有10%的个股跌幅超过了80%;还有5个股票跌幅超过了90%;08年多少人觉得此生再无解套之日,又有多少家庭矛盾因此爆发,此处不表;时间拉到2015-6-12,如果6124买入的散户持股持续不动,在这8年期间,年化复合增长率16.34%。8年啊,只需要8年耐心不动,将从割到体无完肤,到收益转正,这就是天堂到地狱的区别。第十顶:3478
买入点:2009-8-4
解套点:2015-6-12
2009年,4万亿的投资,世界经济的救世主,很遗憾3478,随后迎来了5年的下跌,又是一轮心碎。直至2015年6月12日,6年期间,年化复合增长率23.34%。展望:第十一顶:5178
买入点:2015-6-12
解套点:?
这是改革的梦想,但却无法推测何处是尽头!
总结:
上证综指,23年期间,关注了11个所谓的顶部,有很多顶,曾经被认为是绝杀之地,不走则是灭亡之始,但从统计的数据来看;这些所谓的顶,在中国不到30的资本市场当中,均被证伪,在这些所谓的顶部买入股票并持有不动,在后续的短短20年当中,均出现了多次大概率的解套机会,并获取超额收益率,年化复合增长率高达12%以上,这样说,大多数人可能理解不到其中妙处,巴菲特的年复合增长率也就区区25%而已,而他是投资之神,12%以上的复合增长率意味着,如果投资持股不动,即使你是在所谓的顶部买入,在不到20年的时间内,你可以成为半个巴菲特!人生如梦亦如幻啊~割肉流血之时,怎么可能想到,自己还是半个巴菲特……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08