
初级数据分析师职业要求
小白:那怎样才能成为一名优秀的数据分析师呢?数据分析师的职业要求又有哪些?
Mr.林:你的问题可以用五懂来回答,即懂业务、懂管理、懂分析、懂工具、还要懂设计。
1. 懂业务
从事数据分析工作的前提就是需要懂业务,即熟悉行业、公司业务及流程,甚至有自己独到见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。
例如公司2011年的运营收入是1000万元,那么不熟业务的数据分析师看到的只是1000万这个数字,而熟悉业务的数据分析师,则看到的不仅是1000万这个数字,他还看到数字背后隐藏的信息,如1000万元是有哪几个业务收入构成,哪个业务收入占主要部分,哪个业务收入是最小占比,最高业务收入的地区又是哪个地区等信息。
这就是懂业务与不懂业务的数据分析师之间的区别。
从另外一个角度来说,懂业务也是数据敏感的体现,不懂业务的数据分析师,看到的只是一个数字。反之,懂业务的数据分析师,则看到的不仅仅一个数字,他明白这个数字代表什么意义,知道数字是大了还是小了,懂业务的数据分析师心中有数,这才是真正意义的数据敏感性。
2. 懂管理
懂管理一方面是为了指导数据分析框架的搭建,如刚才介绍的数据分析六步曲的第一步确定分析思路就是需要用到营销、管理等理论知识来指导,如果不熟管理理论,那你如何指导数据分析框架的搭建,以及后续的数据分析开展呢?
另一方面的作用是针对数据分析结论提出有指导意义的分析建议,如果没有管理理论的支撑,如何确保分析建议的有效性呢?
所以这就要求数据分析师需要掌握一定的管理理论知识。
3. 懂分析
懂分析是指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。
基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。
高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
不论简单还是复杂的分析方法,只要能解决问题的方法就是好方法。
4. 懂工具
懂工具是指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
常用的数据分析工具如EXCEL、ACCESS、SPSS、SAS,建议先用好EXCEL分析工具,EXCEL就是一款非常实用的数据处理、分析工具,它能解决、满足你工作中80%,甚至100%。有兴趣、时间、需要的话,再学习SPSS、SAS等统计分析工具。
同样,工具的选择应用以研究问题选择工具,只要能解决问题的工具就是好工具。
5. 懂设计
懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。
图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
小白:颜色搭配都有要求?我不能根据我自己的喜好选择么?
Mr.林:当然有要求,根据喜好选择也要在符合设计原则的基础上选择,例如公司的VI设计是以蓝色为主色调,属冷色系,那么你选的图表颜色就要与公司的VI设计相吻合,尽量避免使用红色、黄色等暖色系的颜色,这方面知识我会在数据展现部分做具体介绍。
小白:好的,看来要成为一个合格的数据分析师还有很长的路要走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09