
基于最小二乘法的异常行为分析模型设计
本文针对异常访问现状及问题进行简要描述,在此基础上提出基于一元线性回归的最小二乘法异常访问分析模型,通过该模型解决了异常访问中时间与访问间相关性问题。
异常访问是指网络行为偏离正常范围的访问情况。异常访问包含多种场景,如Web访问、数据库访问、操作系统访问、终端交互等。
异常访问一直是网络信息安全中备受困扰的。困扰主要体现在以下几个方面,通过某一个模型满足所有场景,模型缺少明确使用条件致使结果不明确,模型计算量大计算耗时长等方面。
基于以上的现状,本文仅针对系统登录异常访问进行分析,通过对系统登录事件与时间进行回归统计筛选出异常访问时间段。
下图为异常登录事件检测的时序图:
异常登录时序图
异常登录事件模型的活动图流程如下:
1)用户进行登录,输入相应的用户名及口令。
2)系统进行登录验证,判断是否为合法用户登录。
3)登录成功或失败均会将本次登录行为记录下来。
4)日志自动发送至分析系统。
5)分析系统对收到的日志进行分析,分析采用最小二乘法。
6)如果发现异常登录事件则触发告警事件。
7)最后工作人员可收到告警提示,并查看到相应的告警。
当触发告警后,工作人员需要在量化分析中进行进一步分系工作。通过日志的登录事件能够找到何人何时登录哪个系统。详细记录下这些信息后方可以进行后续的时间处置工作。
异常登录模型是分析系统的一个重要分析模型。这个分析模型中采用最小二乘法对登录事件进行异常判断。异常判断包括成功登录的异常判断,以及未成功登录的异常判断两类。
以下面的成功登录事件为例进行详细说明:
登录统计列表
上面的表格中描述的是以5分钟为单位时间内,系统登录成功的事件统计。
此时我们无法看出哪个时间单位内存在异常登录的情况。
如下图所示:
登陆次数散点图
首先采用“最小二乘法”对其求解。
最小二乘法
求解出直线与散点图叠加,如下所示:
登录次数最小二乘法拟合图
回归模型
经过逐一计算每个点的残差如下:
登陆次数残差结果表
通过上面的表格可以看到,序号为5、9、10的三个点残差值偏离相对比较大。同时,根据经验判断,正常的登录事件残差值通常在-10~+10之间。而这3个点的残差值偏离区间明显。残差值分别为“15.23967”,”-16.4549”,“15.098”。
针对此登录事件我们采用的置信区间为-10~+10,置信区间可根据不同的场景进行调整。
通过采用最小二乘法的方式进行异常登录事件查询,能够很好的解决传统统计表格中难以发现的问题。传统的方式都是采用TopN的方式对登录成功、登录失败的事件进行简单罗列。但在众多的登录事件中,哪些是值得工作人员关注的却难以得到体现。
最小二乘法的引用可以从众多的登录事件中分离出最为明显的异常行为,通过系统的初筛能够给工作人员提供可供量化分析能力。 工作人员通过量化分析模块能够对相应的事件进行分析工作。同时残差值的可定义为灵活应对分析需求提供便利条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07