
从不同角度了解大数据
无论向谁询问大数据项目中首要的挑战,您基本上都会听到类似的模式回答:数据量(volume)、速度(velocity)以及多样性(variety)。这三个V俨然已经成为大数据的同义词,从CEO往下的所有人员都将战略重心锁定在这三点之上。然而,面对合理的挑战时,大数据的长期性、战略性价值将不会通过这三个V来体现。前面提及的另外三个V才是成功与失败的分水岭
与电子商务永久颠覆业务基础的情况非常类似,信息主管必须通过全新的大数据优先顺序区分方式来推动变革。数据量、多样性和速率是合理的关注点,但它们主要解决的是架构师和开发人员的需求。但是大数据不仅仅可以提高IT效率和节约成本,它还能带来更为深刻的洞察见解和更大的竞争优势。所以您难道不应该将重点放在业务价值而非技术特征上吗?
信息主管应当掌控和推行的三个新V
任何大数据战略如果未能包括或纳入上述的三个新V,那么大数据将无法引起企业的兴趣、列入企业优先考虑事项并成为真正的推动力量(无论是何种用例):
真实度(veracity)。如果您的组织与大多数组织一样,已在保证数据可信度方面耗费了大量心血,引入大数据并不会将您过去在可信度方面的努力全盘废弃。大数据分析中的洞察见解必须是可信的,并且可依据这些洞见制定业务决策或发起活动。
可视化(visualization)。访问大数据是一回事,为企业整体资源消耗提供大数据服务则是另一回事。多样性固然重要,尤其是考虑如何向需要数据的各种人员提供数据访问和使用的时候。确保您不仅能向需要数据的人员提供大数据,而且重点关注如何确保通过高度灵活、可配置以及用户友好的可视化能力充分发挥大数据的潜能。
价值(value)。当您清楚表明并证实了投资对企业造成的影响之后,技术投资的理论便拥有了实践支持。专注于大数据方案将为您的企业带来的最终价值。创建一个令人信服的业务案例,说明大数据投资如何能够增加收入、改善效率、降低业务和IT运营成本、减小风险、提高客户满意度和忠诚度,或在战略上让您的企业从众多其他竞争对手中脱颖而出。这就是大数据从沙盒试行项目广泛应用到整个组织中的方式。
舍弃传统经验,寻求全新灵感,大数据方案助您成功。采用经过证明的大数据方法,确保推动实际的业务价值,并将自己置于组织战略性转型计划的核心位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13