京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2016年大数据技术将迎来怎样的发展态势?预计机器学习、实时数据即服务、算法市场以及Spark等等都将成为发展热点。
1.首席数据官全面崛起
随着企业努力克服由变化带来的冲击,同时需要立足于数字化时代与竞争对手进行对抗,相信将有更多企业将关注重点放在新的高管职位——首席数据官(简称CDO)身上。而这类角色也将成为推动业务发展战略的中坚力量。
“首席数据官将迎来权力、声明以及……存在感,”Forrester研究公司企业架构首席分析师兼副总裁pian Hopkins在一篇博文中写道。“不过从长远角度看,这一职能角色的可行性尚存在疑问。某些类型的企业,例如数字原住民,可能无法通过任命CDO获得回报。”
2. 支撑业务用户
受到大数据人才短缺以及必要商业信息交付能力匮乏的影响,市场需要更多分析师及数据科学家补充进来,并利用更多工具与相关功能将信息直接交付给对应的用户群体。举例来说,微软与Salesforce双方最近各自公布了此类方案,旨在帮助非程序员用户创建应用以审查商业数据。
3.智能化嵌入
无代码编写要求的应用已经成为企业需要重视的一种可行方案,旨在简化业务用户获取所需信息的流程。不过还将有另一些成果不断涌现,即在企业内各应用程序中直接嵌入分析功能。IDC公司预测称,到2020年将有半数商业分析软件包含以认知计算功能为基础的规范性分析能力。
而着眼于宏观角度,Gartner公司指出“自主性主体与方案”将成为另一大新兴趋势,目前已经出炉的相当方案包括机器人、自动驾驶车辆、虚拟个人助手以及智能顾问等等。
“在未来五年当中,我们将迎来所谓后应用时代,届时各智能化主体将带来动态及背景关联行为及接口,”Gartner公司副总裁兼研究员David Cearley在一份声明当中指出。“IT领导者们应当探索如何利用自主性方案及主体以强化人类活动并承接部分原本必须要以人工方式完成的任务。”
4.人才短缺问题能否得到解决?
还在苦苦寻求出色的数据科学家?相信我,其它企业也面临着同样的困扰。最近由商业咨询企业A.T. Kearney公司发布的一份报告显示,72%的全球领先企业都表示自己很难招聘到合格的数据科学人才。
不过国际分析协会则预测称,随着企业逐步采取新型战术思路,人才短缺的问题可能会在2016年年内得到缓解。
“大型企业不会再过多纠结于人才短缺问题了,”该组织在其预测与优先级展望报告中提到。“相反,他们开始采取一些其它办法解决危机,包括出台新的大学课程、改善招聘流程并建立内部规程,从而培养现有员工掌握分析与数据科学。如此一来,迫切希望实现数据分析能力的企业将最终得偿所愿。”
与此同时,IDC公司发布报告指出,这种人员短缺问题将由数据科学家领域延伸至数据架构以及数据管理层面。这将推动大数据相关专业服务业务从目前到2020年获得高达23%的年均复合增长率。
5.机器学习迎来上扬态势
所谓机器学习,可以理解为创建相关算法以帮助计算机通过经验实现学习,而其也成功吸引到了众多希望利用自动化手段取代以往人工处理流程的企业的高度关注。分析企业Ovum公司预测,机器学习将在2016年当中成为“数据准备与预测分析工作的必要前提”。
而Gartner方面则着眼于下个阶段,将先进机器学习技术视为最重要的未来战略趋势。这家分析企业宣称,机器学习中的各类先进表现形式名为深度神经网络,其能够创造系统并学会自行认知世界。“这一领域发展迅速,而各企业也必须评估自身要如何运用这些技术以取得竞争优势。”
6. 人人都爱Spark
分析企业Ovum公司指出,SQL将在大数据分析工作中获得“至高无上”的地位,但Spark的崛起速度同样非常惊人。“Spark将作为SQL的补充性方案,为我们提供额外的结论获取途径,例如实现图形分析流并帮助开发人员利用自己所熟悉的语言对企业数据库内的数据流进行查询,”Ovum公司首席分析师Tony Baer在一篇博文当中写道。
7.数据即服务业务模式即将出现
IBM公司刚刚收购了Weather公司,而获取后者数据、数据流以及预测分析方案的实质在于着眼于未来。各企业需要将数据流即服务打包成为新的业务模式。也有一部分企业着眼于相关软件包并出售自己的数据。Forrester公司预测称,部分企业将凭借这项发展战略获得市场成功,但“大部分无法取得实质性进展。尽管拥有乐观的承诺,但大多数企业其实很难解决个人信息保护以及对应商业模式所带来的复杂性难题,”Forrester公司副总裁pian Hopkins在他的个人博客当中写道。
8. 实时分析结论
Forrester公司预测数据流提取与分析将在2016年年内成为数字化领域胜出企业们的必要能力。
“将数据转化为实际行动的通道非常狭窄。在未来12个月当中,将有更多立足于Kafka及Spark等开源项目的开源数据流分析方案不断涌现,”Forrester公司副总裁pian Hopkins在博文中写道。
9.算法市场的兴起
这是Forrester公司提出的另一项预测。“各企业将意识到很多算法与其自行开发,不如通过市场购买,而后直接向其中添加数据即可,”Forrester公司的pian Hopkins写道。他同时列出了目前已经出现的几种此类服务,包括Algorithmia、Data Xu以及Kaggle。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12