
零售业大数据应用应运而生
首先从产业发展的需求来看,大数据可以帮助零售企业来洞察消费需求,零售企业在面临市场的变化,消费需求变化这样一个大的背景下,需要根据消费者需求的变化来调整我的战略。而这个时候就需要大数据技术来做支撑,在充分了解消费者需求的前提下,企业要重新定义自己的价值,这个时候也需要大数据来做支撑。第三个我们看到目前线上线下趋同这样一个趋势已经非常明显了,线上企业通过电商平台或者移动平台来发展线上的业务,线上电商企业来开展线下的业务,全渠道零售这种模式离不开大数据的支撑。从产业创新模式来看,一个是C2B,会把原来以卖方为主的模式转移到以买方为主,而由用户的购买来驱动企业的生产,在这个过程中需要三个支撑体系。一个是需要非常个性化的营销,第二个需要非常柔性化的生产,第三个需要社会化的供应链。而这三个支撑体系对大数据的要求和大数据的处理提出了更高的要求,这都离不开大数据的一个支撑。
第二个是一个O2O的例子,线上线下融合发展这是未来一个趋势,而在O2O过程中不可避免会产生大量的数据,怎么利用这些数据更精确的为消费者提供服务,让消费者快速的精准的找到自己想要的商品,以及如何帮助消费者购买到质量有保证的商品,这些背后都需要有大数据支撑。这是整个零售业大数据发展的一个契机。
具体来看,目前越来越多的企业已经把大数据上升到战略资产这样一个位置,从中国大数据市场整体规模来看,今年我们预计整体增长的速度应该会超过30%,预计到2016年,整个市场规模会突破100亿人民币这样一个规模。从整个零售企业数据的应用来看,应用率还不到5%,零售业大数据蕴藏潜力是无限的。中国零售大数据目前整体还属于市场启动的一个前期,零售大数据是从2011年在中国开始出现的,马上就受到市场很大的关注。这里我们可以看到像阿里巴巴在2011年底的时候推出了淘宝指数,帮助买家卖家第三方用户群体分析自己的产品走向,或者搜索的一些热点,或者一些销售数据的趋势等等。这个是在2011年底的时候出现的,而中国大数据目前我们判断是属于市场的启动前期。为什么?虽然说已经有很多应用出现,但是主要是在企业内部,进行企业内部资源优化配置这样一个过程当中,或者说资本市场虽然很关注,但是以大数据为核心竞争力来进行上市的企业还没有出现,所以我们判断未来三到五年,中国零售业大数据发展情况还是会从探索期慢慢步入到快速发展这样一个阶段,但是时间还需要三到五年。
接下来我们看一下整个零售业大数据的类型,按照企业的界限,我们可以把零售业大数据分成内部数据和外部数据这两种类型。而从线上企业和线下企业看,在企业发展信息化的初期,其实这个数据的量级,应该是从兆B到TB的级别,类型主要包括交易数据,比如运营数据,比如供应链的数据,比如用户的数据,这是零售企业数据主要的类型。而进入大数据时代以后,零售企业数据的类型从企业的内部扩展到企业的外部,而这个量级也从TB发展到ZB这样一个量级。数据的类型也从刚才提到的一些用户数据、运营数据、交易数据,目前已经发展到了外部一些交互的数据,直到我们的大数据,是这样一个走向。而现在我们来看线上企业和线下企业,从这边这个图可以看到,比如像店铺或者渠道这样一些数据,是具有线下这些属性的,是属于线下范畴。而像流量、转化率等等这些,是线上零售所特有的数据属性。这是整个零售业大数据的类型。
中国零售业大数据发展趋势
第一点是交叉串联,中国零售企业线上线下协同发展或者融合发展是未来一个趋势。怎么样利用大数据来实现线上线下企业交叉串联分析,这是大数据未来需要研究的一个方向。
第二个是价值衍生,可以理解成怎么样实现大数据充分的应用,有两个方向,一个是线上企业,线上企业的方向是把自己整个平台发展成一个数据产品,比如阿里巴巴首先他自己是一个平台,同时他具有自己的技术研发,衍生出来成为一个数据产品,这个产品既包括平台数据产品,也包括后来跨界的金融相关的一些产品。线下企业的做法,如果有多年积累的这些传统的零售企业,做法是我可以开放我的数据资源,比如国美就开放他们的供应链数据,通过与战略合作伙伴的数据共享,让数据价值发挥到最大。
第三个是决策使能,可以理解成利用大数据,帮助更好的做决策。通过数据分析,我们可以得出决策的一个结果,通常来讲,大数据分析出来的决策结果会出乎我们的意料。但是这块数据分析的结果是不以决策者还是领导为转移的,通过数据分析得出这些结论之后,我们再服务于定性商业质感的一些分析,综合作出我们的决策
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09