
算法介绍
以时间顺序挖掘周期性的模式(即周期性分析)是一种重要的数据挖掘方式,在以前的研究中我们假设每个时间点只发生一个事件,然而在这篇文章中我们研究一种更普遍的模式:即在每个时间点可以发生多个事件。
在这个算法中我们需要自己设置三个参数:min_rep, max_dis, global_rep。分别代表“一个有效序列的最小重复次数”、“相邻有效序列最大允许扰动”、“有效序列总的要求重复次数”。其实在算法最后中我们会发现,我们也可以设置另外一个参数Lmaxn,即允许的最大周期。
最后,这个算法原作者似乎认为效果不错,->.->
问题定义
在这个部分中,我们定义一些异步周期挖掘的问题。
E代表所有事件的集合,即一个事件的集合一定是E的一个非空子集。信息库D是一系列的时间记录,每一个记录用一个数组来表示(tid, X),表示在tid时刻发生了集合X中的事件。同时D的这种表示方法我们定义为水平表达格式(horizontal format),具体请看下表。同时对于另一个事件集合Y,我们定义Y是被一个时间记录所支持需满足:Y⊆X。一个有k个事件的序列一般称为k-事件序列(k-event set)。
Time | Event Set | Time | Event Set | Time | Event Set |
---|---|---|---|---|---|
1 | A, B, C | 7 | A, B, C, D | 13 | A, C, D |
2 | B, D | 8 | A | 14 | A, C |
3 | A, C, D | 9 | A, C, D | 15 | A, D |
4 | B | 10 | A, C | 16 | A, C, D |
5 | A, C | 11 | D | 17 | A |
6 | D | 12 | A, B, C, D | 18 | A, B, C, D |
定义 1:一个以l为周期的模式是一个非空序列P=(p1,p2,…,pl),其中p1是一个事件序列,其他的或者是一个事件序列,或者是*,即可以理解为任何序列。
一个模式P若包含i个事件则被称作i-模式(i-pattern)。特别的,我们称1-模式为单模式(singular patterns),当i>1时我们称之为复杂模式(complax patterns),例如(A, *, *)是一个单模式而(A, B, *)是一个2-模式,也称为复杂模式。如果一个模式不包含任何“*”我们就称之为满模式(full pattern),否则就称之为部分模式(partial pattern)。
定义 2:设有周期为了的模式P=(p1,p2,…,pl)和一个包含l个事件的集合D’=(d1,d2,…,dl),我们定义P匹配D’当且仅当对于每个j(1<=j<=l),或者pj=*,或者pj⊆dj。D’也可以称为P的一个匹配项。
比如现在有一个模式P=(A, B, *),那么*显然可以和任何事件序列匹配,于是如果我们有D=(A, B, C)就是一个P的一个匹配项。
定义 3:为了方便,我们用一个4元组(P, l, rep, pos)来定义一个模式片段P,它的周期l,开始位置是pos,并重复rep次,一般我们假设这个rep要取最大值(maximum segment)。
定义 4:一个最大片段(maximum segment)是一个有效片段当且仅当其重复次数不小于参数min_rep。
我们再定义一下扰动的概念:连个片段的扰动就是第一个片段的尾部和第二个片段的开始的位置之间的距离。例如在下图中,S1和S3之间的扰动是8(15 – 3)。
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | C | B | A | E | D | A | A | B | C | A | B | C | A | A | D | A | A | B | C | A | E | C |
D1 | D1 | D1 | D2 | D2 | D2 | D3 | D3 | D3 |
|
|
|
|
|
D8 | D8 | D8 | D9 | D9 | D9 | D10 | D10 | D10 |
S1 | S1 | S1 | S1 | S1 | S1 | S1 | S1 | S1 |
|
|
|
|
|
S3 | S3 | S3 | S3 | S3 | S3 | S3 | S3 | S3 |
定义 5:假设一个时间的数据库D和一个模式P,序列D是一系列不重合的有效序列,并且其中任意相邻片段的扰动小于一个预定的值,我们称之为最大扰动max_dis。一个序列被称作是有效的当且仅当P的全部的重合的次数大于一个预定的参数global_rep。
对于Fig.1b,如果我们设min_rep = 2, global_rep = 6, max_dis = 8,那么我们将会得到两个有效序列(S1, S2),和(S1, S3)。而我们的任务找到所有有效的周期序列,其周期在1~Lmax之间,其中Lmax由用户给定。
算法预览
在这个模块中,我们从挖掘单模式的周期序列到复杂模式周期序列,展示一下在时间数据库中异步周期序列挖掘的过程。首先一个称为“SPMiner”被用来找所有的单模式周期序列,它的原理主要是潜在循环试探(Potential Cycle Detection)和基于哈希的表(Hash-Based Validation)。然后,两个算法“MPMiner”和“CPMiner”被用来寻找有效的多重单模式(multievent 1-patterns)和复杂模式序列(complex patterns)。最后,所有的有效片段都可以组合在一起来检测是否满足要求,即最后的”APMiner”。详细见下图:
现在我们分步骤来讲解每一步的具体方法及部分伪代码
SPMiner:Segment Mining for Single Event Pattern
首先,我们在前面提过一种叫做水平数据格式(horizontal database layout)的数据结构,现在我们要使用一种和其相对应的垂直数据格式(vertical database format),具体请见下表,它可以大大提高我们的搜索效率。
Event | TimeList |
---|---|
A | 1, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18 |
B | 1, 2, 4, 7, 12, 18 |
C | 1, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18 |
D | 2, 3, 6, 7, 9, 11, 12, 13, 15, 16, 18 |
PCD算法(Potential Cycle Detection)测探所有在1~Lmax之间的可能周期,具体看伪代码。
HBV算法(Hash-Based Validation)可以对于每个潜在的周期p和一个事件列表e,通过遍历一遍事件表来找出所有的单模式序列。具体看伪代码。
Procedure of SPMiner(D, Lmax)
for each event Ei ∈ VD do:
PCD(Ei, TimeList);
for p = 1 to Lmax do
if(CheckSet[p] >= min_rep)
then HBV(Ei, Ei.TimeList, p);
Procedure of PCD(TimeList)
for i = 1 to i <= Lmax do CheckSet[i] = 1;
for each time instant Ti ∈ TimeList do
for each time instant Tj ∈ TimeList, i < j do
if((Tj - Ti) <= Lmax) then
CheckSet[Tj - Ti]++;
else break;
Procedure of HBV(EvtSet, TimeList, p)
Allocate data structure Cseg[p];
for i = 0 to p - 1 do /* Initilization */
Cseg[i].last = -Max; Cseg[i].rep = 1;
/* Validation */
for each time instant Ti ∈ TimeList do
pos = Ti % p;
if(Ti - Cseg[pos].last == p) then
Cseg[pos].rep++; Cseg[pos].last = Ti; continue;
if(Cseg[pos].rep >= min_rep) then
Output(EvtSet, p, Cseg[pos].rep, Cseg[pos].last - p * (Cseg[pos].rep - 1));
Cseg[pos].rep = 1; Cseg[pos].last = Ti;
for i = 0 to p - 1 do /* Rechecking */
if(Cseg[i].rep >= min_rep) then
Output(EvtSet, p, Cseg[i].rep, Cseg[i].last - p * (Cseg[i].rep - 1));
最后我们会得到如下的结果
Pattern | Period | Rep | Start |
---|---|---|---|
A | 1 | 7 | 12 |
A | 2 | 5 | 1 |
A | 2 | 6 | 8 |
C | 2 | 5 | 1 |
C | 2 | 5 | 10 |
D | 2 | 5 | 7 |
D | 3 | 6 | 3 |
这里我们直接介绍推荐的SBE算法(Segment-Based Enumeration)。
SBE算法的思路是,对于一个周期p,先在上表中找到周期为p的项。我们假设一个变量off = start % p,这样我们在此步找到的组合内部off则一定相同。如果最后重合部分还大于参数min_rep,那么我们就成功的找到了一组答案了。而对于重合的部分,我们也可以根据上表在O(1)的时间内计算出来。
这一步的做法和上一步的SBE算法十分相似。
不过在上一步中我们要求off相同才能放在一组,而在这一步中我们要求off必须不同才能在一组,伪代码如下
Procedure of CPMiner(p, SegListp, w.r.t period p)
for each segment Si ∈ SegListp; do
Node.Head = Si;
Node.Tail = all segment Sj ∈ SegList with j > i;
Node.start = Si.start;
Node.end = Si.start + (Si.rep - 1) * p;
CP(Node, p);
Subprocedure of CP_DFS(Node, p)
if(|Node.Head| == p) then return ;
for each segment Si ∈ Node.Tail do
Valid = True;
for each setment Sj ∈ Node.Head do
if((Si.start - Sj.start) % p == 0) then
Valid = false; break;
if(Valid == false) then continue;
newC.start = Si.start;
newC.end = Min{Node.end, Si.start + (Si.rep - 1) * p}; //take care
rep = ⌊(newC.end - newC.start) / p⌋ + 1; //take care
if(rep >= min_rep)
newC.Head = Node.Head ∪ Si;
newC.Tail = all Sk ∈ Node.Tail with k > i;
PatternOutput(newC, p, rep)
CP_DFS(newC, p);
else if(Node.end - Node.start + 1 < p * min_rep) break;
Subprocedure of PatternOutput(Node, p, rep)
Shift = Node.end % p //take care not Node.start!
for i = 1 to p do Pattern[i] = *;
for each segment Si ∈ Node.Head do
Pattern[(Si.start - Shift) % p] = Si.EvtSet;
Output(Pattern, rep, p, Node.end - (rep - 1) * p);
就像我们在定义5中说的那样,一个异步周期模式被定义为有一组序列互不重合。因此我们还需使用深度优先搜索来枚举所有的组合方式。现在假设我们把所有的片段按照开始的时间排序,一个单模式的片段如果重复次数大于global_rep,那么它本身就是一个合法答案,但是每次枚举过程中,我们总要尽力的把新的事件加入到已有的事件序列中。同时,如果新的片段距离的开始位置距离已有片段的距离小于max_dis,那么我们也可以把它加入进去。但是一旦上述条件不符合的话,我们就可以跳出搜索了,因为我们是按照开始的时间顺序有小到大排序的,这样可以达到剪枝的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30