京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用SPSS绘制质量控制图?
控制图(Control Chart)又称管理图,它是用来区分是由异常原因引起的波动,还是由过程固有的原因引起的正常波动的一种有效的工具。控制图通过科学的区分正常波动和异常波动,对工序过程的质量波动性进行控制,并通过及时调整消除异常波动,使过程处于受控状态。不仅如此,通过比较工序改进以后的控制图,还可以确认此过程的质量改进效果。因此,控制图在质量管理中有着广泛的应用。
控制图由样本均值服从于正态分布演变而来。正态分布可用两个参数即均值μ和标准差σ来决定。正态分布有一个结论对质量管理很有用,即无论均值μ和标准差σ取何值,产品质量特性值落在μ±3σ之间的概率为99.73%,落在μ±3σ之外的概率为100%-99.73%= 0.27%,而超过一侧,即大于μ+3σ或小于μ-3σ的概率为0.27%/2=0.135%≈1‰,,休哈特就根据这一事实提出了控制图。图上有中心线(CL)、上控制限(UCL)和下控制限(LCL),并有按时间顺序抽取的样本统计量数值的描点序列。
多数情况下是通过人工来绘制控制图,首先通过计算器计算各种指标,然后再一步步地绘制控制图。在这个过程中,往往会出现计算错误或者误差过大等原因,使得最后的控制图达不到预期的效果,更为严重的是能使质量管理者产生错误的判断,做出错误的决策,从而产生较大的损失。也有的企业利用excel绘制控制图,从而提高其精确度,减少误差。然而,用excel绘制控制图的步骤比较繁杂,不容易掌握,容易在绘制过程中产生操作性失误,造成数据集的失真。
SPSS的图形工具非常强大,具有很强的统计分析功能。在质量数据管理中,经常要用到一些图形方法和工具,例如帕雷托图、直方图、散点图、控制图、序列图等,SPSS均可以有效地应用这些图形方法和工具来处理质量数据信息,这些功能集中在Graph菜单中。
因此,此处我们采用SPSS来绘制控制图。
SPSS控制图的选择依据(X-R或X-S和X-MR)
根据主要测量值分组变量的具体情况,可选择X-R、X-S,即均值-极差和均值-标准差控制图;或者选择X-MR,个体-移动均值控制图。
1、分组变量中有大于10个组值,宜于计算标准差,故选择X-S控制图。
2、分组变量中有小于10个组值,选择计算极差,即X-R控制图。
3、分组变量中只有1个组值,则选择个体-极差控制图,即X-MR控制图。
案例:个体-移动极差控制图
数据data17-18为某搅拌站实测混凝土坍落度数据,现在使用控制图看看工艺质量情况。
步骤:
分析—质量控制—控制图—个体/移动全距—个案为单元
过程度量:选择“测量值变量;标注子组:选择“编号”
自动生成以下两组控制图,可用于综合解读。
第一张是均值X的控制图,第二张是移动均值的控制图。上面我们已经完成了数字层面的分析,最关键的则是发现数据的异常和寻找异常发生的原因。由于本案例数据源来自书籍,并无具体案例数据的实际描述,因此不宜在此处做过多的解读。详细的规则解读可参考以下内容。
质量控制图的使用规则
既然质量控制图是为了帮助我们及时发现指标的不正常状态,那么当我们看到上面的图以后,需要观察和分析是不是存在异常的点或异常的变化趋势,如何定义这些异常,需要有一套控制规则:即样本点出界或者样本点排列异常:
点超出或落在ULC或LCL的界限;(异常)
近期的3个点中的2个点都高于+2σ或都低于-2σ,近期5个点中的4个点都高于+σ或都低于-σ;(有出现异常的趋势)
连续的8个点高于中心线或低于中心线;(有偏向性)
连续的6个点呈上升或者下降趋势;(有明显的偏向趋势)
连续的14个点在中心线上下呈交替状态。(周期性,不稳定)
查资料时发现不同的地方对控制规则有不同的定义,我这里参照的是SPSS里面的规则,具体应该可以根据实际的应用环境进行调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27