京公网安备 11010802034615号
经营许可证编号:京B2-20210330
围绕着大数据这个技术热词,很多媒体都建议企业或组织应投入巨资聘请和留住具备高技能水准(当然也是高薪)的数据科学家。
而现实情形却是,很多企业将会利用各种数据分析技术,培训员工来解决大数据挑战,以便将大数据转变为智慧数据。
小企业,大数据
CompTIA的研究经理Tim Herbert称,对于大量的中小企业来说,围绕大数据的炒作并未引起共振,也没有多少企业在招聘这方面的人才,因为这些企业所面临的挑战其实跟大数据并没有真正的联系。
“很多企业实际上并没有大数据问题,他们遇到的是其他一些小得多的挑战,”Herbert称。他们所遇到的数据挑战主要是在IT部门和其他部门之间关于市场营销、财务和业务运营方面的问题,这些才是他们真正的业务目标,而他们需要明了的是如何将原始数据转变成可操作的智能数据。
CompTIA上个月发布的第二份年度报告“大数据洞察及其商机”显示,很多中小企业将会投资培训其现有的员工,而不会花钱去聘用一位经过正规培训的数据科学家。
“高薪聘用那些受过专业培训,具有高学历的数据科学家对大多数企业来说可能并不实际,所以他们会把有限的资金投入现有资源中去,”Herbert说。
CompTIA的研究发现,大多数中小企业将会依靠现有的业务分析师和财务分析师来做大数据的工作,当然这些人也需要进行再培训才行。
根据CompTIA的报告,这一情形在很多企业中正在发生,销售和研究部门参与大数据相关创新的比例分别从17%和13%上升到了27%和25%。
Herbert认为,根据这些数字,大数据看来已从IT部门走出,进入了其他的业务部门,但也只是很少的一部分。
“大多数企业尚未意识到,他们必须首先确保其数据格式能够最好地适用于分析,以便产生价值,”Herbert说。“找到相应的技术来实现这一点很容易,但是要找到并培育分析人才和专家却很难,需要花费相当一段时间。”
大企业,大挑战
Kognitia的CTO Roger Gaskell说,对数据科学家的最初需求一般来说大企业较高,因为这些企业会尝试将其数据和复杂的商业智能解决方案的所有价值都发挥出来。
很多正在寻找竞争力优势的大型企业将会借机聘用那些能够挖掘数据,预测市场未来趋势、销售周期、趋势和客户行为的人才,Gaskell称。
“假如企业需要某些预测型分析功能,那就得聘用一些数据科学家,但是想要聘用一支完整的数据科学家团队那成本太高了,”Gaskell说。因此企业将会想办法培训自己的业务和财务分析师,以及普通的业务用户,利用各种自动化工具来执行数据分析任务。
“从客户那里得到的反馈是说,他们只需要少数专家,可能只需要3位、5位,顶多7位拥有高技能和高学历的数据科学家,”Kognitia负责业务发展和营销的副总裁Michael Hiskey说。
大数据的现实 vs 炒作
就现阶段而言,这种急于去聘用训练有素的高学历数据科学家的趋势似乎得归功于大数据的炒作,尤其是因为IT行业还处在大数据的使用和关联应用的起步阶段的缘故,Hadoop解决方案提供商MetaScale负责全球营销的Ankur Gupta如是说。
“没错,大企业正在寻找拥有统计和预测建模背景的人才,这些人才能够深入挖掘数据,预测各种趋势。当然,企业也得有耐心等待这些趋势和行动能见分晓的时候,”Gupta说。
“眼下,我们看到的一个趋势是,企业亟需能够分析数据,并利用其进行决策的人才。但我们还处在大数据发展的初期阶段,随着技术的发展,我们相信企业会逐渐把大数据分析功能分流到机器、软件和技术上去。到了那个时候,企业就不需要聘用十多位数据科学家来做这些工作了,”Gupta说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12