
围绕着大数据这个技术热词,很多媒体都建议企业或组织应投入巨资聘请和留住具备高技能水准(当然也是高薪)的数据科学家。
而现实情形却是,很多企业将会利用各种数据分析技术,培训员工来解决大数据挑战,以便将大数据转变为智慧数据。
小企业,大数据
CompTIA的研究经理Tim Herbert称,对于大量的中小企业来说,围绕大数据的炒作并未引起共振,也没有多少企业在招聘这方面的人才,因为这些企业所面临的挑战其实跟大数据并没有真正的联系。
“很多企业实际上并没有大数据问题,他们遇到的是其他一些小得多的挑战,”Herbert称。他们所遇到的数据挑战主要是在IT部门和其他部门之间关于市场营销、财务和业务运营方面的问题,这些才是他们真正的业务目标,而他们需要明了的是如何将原始数据转变成可操作的智能数据。
CompTIA上个月发布的第二份年度报告“大数据洞察及其商机”显示,很多中小企业将会投资培训其现有的员工,而不会花钱去聘用一位经过正规培训的数据科学家。
“高薪聘用那些受过专业培训,具有高学历的数据科学家对大多数企业来说可能并不实际,所以他们会把有限的资金投入现有资源中去,”Herbert说。
CompTIA的研究发现,大多数中小企业将会依靠现有的业务分析师和财务分析师来做大数据的工作,当然这些人也需要进行再培训才行。
根据CompTIA的报告,这一情形在很多企业中正在发生,销售和研究部门参与大数据相关创新的比例分别从17%和13%上升到了27%和25%。
Herbert认为,根据这些数字,大数据看来已从IT部门走出,进入了其他的业务部门,但也只是很少的一部分。
“大多数企业尚未意识到,他们必须首先确保其数据格式能够最好地适用于分析,以便产生价值,”Herbert说。“找到相应的技术来实现这一点很容易,但是要找到并培育分析人才和专家却很难,需要花费相当一段时间。”
大企业,大挑战
Kognitia的CTO Roger Gaskell说,对数据科学家的最初需求一般来说大企业较高,因为这些企业会尝试将其数据和复杂的商业智能解决方案的所有价值都发挥出来。
很多正在寻找竞争力优势的大型企业将会借机聘用那些能够挖掘数据,预测市场未来趋势、销售周期、趋势和客户行为的人才,Gaskell称。
“假如企业需要某些预测型分析功能,那就得聘用一些数据科学家,但是想要聘用一支完整的数据科学家团队那成本太高了,”Gaskell说。因此企业将会想办法培训自己的业务和财务分析师,以及普通的业务用户,利用各种自动化工具来执行数据分析任务。
“从客户那里得到的反馈是说,他们只需要少数专家,可能只需要3位、5位,顶多7位拥有高技能和高学历的数据科学家,”Kognitia负责业务发展和营销的副总裁Michael Hiskey说。
大数据的现实 vs 炒作
就现阶段而言,这种急于去聘用训练有素的高学历数据科学家的趋势似乎得归功于大数据的炒作,尤其是因为IT行业还处在大数据的使用和关联应用的起步阶段的缘故,Hadoop解决方案提供商MetaScale负责全球营销的Ankur Gupta如是说。
“没错,大企业正在寻找拥有统计和预测建模背景的人才,这些人才能够深入挖掘数据,预测各种趋势。当然,企业也得有耐心等待这些趋势和行动能见分晓的时候,”Gupta说。
“眼下,我们看到的一个趋势是,企业亟需能够分析数据,并利用其进行决策的人才。但我们还处在大数据发展的初期阶段,随着技术的发展,我们相信企业会逐渐把大数据分析功能分流到机器、软件和技术上去。到了那个时候,企业就不需要聘用十多位数据科学家来做这些工作了,”Gupta说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10