
大数据考验整合能力
大数据在带来新的商机和用户的同时,也带来了诸多挑战。 大数据存储主要考验的是技术整合能力和资源整合能力。大数据是一项持久的工程,也是一个不断迭代的过程,不能一蹴而就。
业务集中在云计算、大数据和业务连续性方面的柏科数据总经理林柏乔给记者举了一个例子,某客户需要做大量的日志分析,每天可以产生40TB的新数据,因此每天需要增加一至两台存储。越来越多的客户需要用大数据工具去分析其业务,以投入更加精准的资源去开发更具针对性的功能和新的应用。
“美国20%的企业已经不同程度地使用大数据工具来提高投资回报率。中国的500强公司也开始积极关注并制定自己的大数据计划。不久的将来,大数据应用在中国会越来越多。”林柏乔表示。
存储架构不变不行
随着大数据时代的到来,用户对存储最迫切的需求就是更好的扩展性。存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,而且在升级过程中最好不要停机。随着数据量的持续增长和数据来源的多样化,传统的存储系统已经无法满足大数据应用的需要。存储厂商已经意识到这一点,并开始修改基于块和文件的存储系统的架构,以适应新的要求。
北京荣之联科技股份有限公司基础架构部经理李明壮认为,大数据存储应该具备出色的扩展能力、可管理性、高可用、高性能和分布式架构等五大基本特征。“为降低成本,企业必须采用一个能够长期发展的数据存储平台,不仅需要购买行业标准的服务器和存储产品,同时还要保证产品的扩展能力和性能。存储系统需要持续满足企业需求,并可通过灵活的扩展来保证数据处理对高性能的需求。”李明壮解释说,“传统的网络存储系统采用集中式的存储服务器来存放数据,存储服务器存在性能瓶颈,不能满足大数据存储的需要。而分布式存储系统采用可扩展的系统架构,能够利用多台存储服务器实现数据的负载均衡访问,提高了系统可靠性、可用性和存取效率,且易于扩展。”
“面对大数据,很多用户希望能充分利用原有的存储。因此,存储整合是一个不小的障碍。”李明壮表示,“我们要为客户考虑,如何更好地节约成本,使传统存储能够在新的大数据平台中发挥最大效用。”
华胜天成集团市场总监唐北雁认为,用户除了要面对大数据的去冗降噪技术、高效率低成本的大数据存储、大数据的融合等技术方面的挑战以外,在大数据的落地模式、实时数据分析与实时业务响应方面也面临诸多难题。
先里后外效率高
林柏乔认为,大数据存储技术会发生颠覆性的改变,如果一个厂家只关注基于控制器的存储,那么其在大数据方面很难有用武之地。无论在美国还是中国,真正使用大数据的客户没有采用传统磁盘阵列的。“一个大数据解决方案如果想吸引用户,就应该提供比Hadoop的HDFS更加高效的文件系统。”林柏乔认为,“用户需要的是一个高效的综合了计算、网络和存储的解决方案,而不是单纯的存储。”
大数据应用的前提是必须有明确的业务需求。换句话说,就是用商业思维来推动大数据,只有这样,大数据的价值才能得到充分展现。
唐北雁建议用户可从以下几方面入手开展大数据应用。
第一,做好企业非结构化数据的“数字化”,将处于半休眠和休眠状态的非结构化数据激活,进行统一管控。
第二,先做好企业内部数据的整合,将通过企业IT规划、主数据管理、业务系统和其他渠道收集来的数据进行整合和标准化,然后再利用大数据分析技术解读这些数据,为企业提供有价值的数据分析。
第三,建立合理的长期规划。当内部的数据得到充分应用以后,企业的目光就会转移到外部数据,特别是那些从移动互联网、社交商务、微博和微信中获得的数据。这些数据中也存在着大量的数据财富。
据北京荣之联科技股份有限公司产品预研部产品经理甘国华的观察,中国用户更倾向于选择开放式的存储来搭建大数据平台。开放式的存储采用分布式存储架构,数据分散在各存储节点上。“作为集成商,我们能够为用户提供分布式存储,并在此基础上提供包括检索、分析和可视化工具在内的一整套大数据解决方案。”甘国华表示。
大数据需要的是一个高效的存储平台。华为认为,构建这一平台的基础是全融合技术架构,它融合了存储、分析和归档功能,可以实现数据全生命周期的管理,提高大数据的应用效率。
产品、规化都重要
大数据既给系统集成商带来了挑战,也创造了新的商机。唐北雁表示:“大数据给我们带来的挑战主要是如何进行数据的收集和存储。在存储方面,用户应该通过云存储和分布式文件存储等技术实现对大数据基础构架的支撑,同时使用NoSQL数据库来实现数据的存储和管理。”
李明壮表示:“在大数据平台建设中,我们不单纯为用户提供产品,更要帮助用户制定一个适应大数据需求的长久的数据中心规划。这个规划涉及我们以前不熟悉的软件方面的知识,比如数据分析、数据挖掘等。对于新兴的应用领域,我们需要从零开始了解这些行业用户的需求,为其提供更好的方案。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27