
出人意料的是,音乐人才、物理学家和工商管理人士能为大数据团队带来全新的视角。你的企业正在打造数据科学团队吗?首先,你应当从业务部门抽调专家来提出正确的问题。然后考虑招募一些物理学家、音乐人才,当然,还有统计人才和计算机科学家。
这些才是顶级大数据团队的关键“配方”,至少管理咨询与技术顾问公司Booz Allen的战略创新部门副总裁乔什沙利文是这么认为的。沙利文的部门负责帮助客户开展数据分析项目,在这个过程中沙利文看到太多企业犯下相同的错误。
“大多数企业只知道招聘计算机科学家,因为他们认为大数据是一个技术问题,但他们错了,”在接受媒体采访时,沙利文说道:
我们问客户的第一个问题是:你准备向数据分析系统提出什么样的问题?而不是你需要如何去编写代码。你首先需要有创造力和好奇的人。
Booz Allen组件数据科学团队的第一步是确保团队成员包括数学与统计人才、计算机科学专家和企业各业务领域专家。其中业务专家非常关键,他们是确保大数据分析产生商业价值并提升企业决策的关键环节。
值得注意的是,大数据团队中的业务专家需要与业务部门进行岗位轮换,帮助企业所有业务部门都意识到大数据团队的存在,同时需要将数据团队中的业务专家送回到业务岗位,他们将成为数据驱动的企业经营管理方法与文化的布道者。
太多企业为特定部门或者业务线组件专门的分析团队,这些团队常常无法从企业的整体业务出发考虑问题,同时这也会滋长“数据保护主义”,部门间各自囤积数据,并为数据分享设置障碍。
另外一个令人质疑的做法是在研发团队内囤积分析专家,使他们很难接触到业务部门。
陶氏化学在这方面就做得非常好,其数据科学家团队与业务专家肩并肩合作,开发出新的业务成本模型仅仅在货运和原材料两个环节就帮助公司节省了数十亿美元。
在统计专家和计算机科学家之外,沙利文的部门还成功地将物理学家和音乐专业人士引入数据分析团队,这听上去有些古怪。实际上,这两类人才为数据分析团队带来了全新的观点和方法。例如物理学家带来了从猜测、假设到实验的一整套科学验证方法,而音乐专业人才则具备“惊人的创造力和量化技能”。
当数据分析团队在处理多种数据的时候,非常类似交响乐作者编配多种乐器的过程,而这方面音乐人才是最在行的。例如在一个医药公司的数据分析项目中,需要混搭不良药物反应数据、社交媒体数据、研究注释、实验室数据和分子数据。在大数据分析出现之前,从来没有人会将这么多不同来源的数据整合到一起。事实证明,在音乐人才的帮助下,这些数据形成了完美的“合奏”,并最终帮这家药企优化了药物研发的优先级。
在最近的一个项目中,沙利文的团队帮助一家航空公司实施的大数据项目证明了大数据的商业价值。在这个大数据项目中,旅客的行程、路线、票价、目的地、载客量历史数据与体育赛事日程、传统节日、学校假期、旅客人口统计和社交媒体数据整合到一起分析。
以上这些数据航空公司有很多对应的BI仪表盘和PDF报告工具,但航空公司们从来没想到过将这些数据综合起来分析。结果证明,这样的大数据分析能帮助他们优化航班时刻表和票价,每年增加数千万美元的收入。
数据分析团队多元化的优势在大数据众包平台Kaggle上得到最佳体现。在那里,不乏天文学家、对冲基金金融工程师、经济学家以及数学家甚至律师提出能击败企业内部数据分析团队的更好的分析方法/算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13