
大数据让我们前所未有的方式和观点,看到究竟什么有用、什么没用,以前不可能观察到的种种学习阻碍,现在有办法一一化解,大幅改善学生的学习成效,颠覆传 统教学模式,造福更多学子。课程可以依据学生个人的需求做调整,真正做到因材施教,因为教师可以透过学生在线上学习时不经意的行为来判断成效、调整教学内 容和顺序,以及多次复习会造成学习瓶颈的困难观念,甚至即时因应学生的反应而出招等等。教师的工作不会被教学网路和影片取代,而会变得更有效益、也更有 趣,因为能够更专注针对学生作个人化的指导。
他们也认利用大数据分析,学校领导者和政府决策官员,也能用更低的成本提供更多教育机会,这些正是减少社会贫富差距、让社经阶层流动的重要因素;社会大众 也能够知道「学习」应当是怎么一回事,打破教育主管机关和学校的垄断地位,从而让教育的本质和体制彻底翻转。他们主张,大数据时代正是不断学习的时代、翻 转教育的时代!
不过大数据的应用是双面刃,我们可能会把相关性误判为因果,而且如果学生的个资无法被保护,其旧学习歷程被曝光,可是会影响日后的升学与就业。关于这方 面,《大数据:教育篇》引用了《大数据》的许多观念和案例,例如误将相关性当因果以及个资保护等等,所以建议也要去读《大数据》这本书。
不过,尽信书不如无书,作者在西方遇到的问题,和我们在东亚遇到的,有很大的差异。最大的差异有两点。
一个大差异,在一张很多网友在脸书分享的图表清楚表达出来:图裡有两条轴线,第一条轴线为「欧美人才养成」,而第二条则是「台湾人才养成」,轴线将学习生 涯分成「学前」、「小学」、「国中」、「高中」以及「大学」等五个阶段。「欧美人才养成」各阶段的学习目标相当明确并且不同,学前做好生活管理、小学探索 环境、国中要开始找寻自己的梦想、高中则要面对生涯抉择,而到了大学就要开始培养实务能力。
台湾人才培养的轴线,从「学前」一直到「高中」生涯,全是「读书考试」,一直到「大学」时期,才要将「生活管理」、「探索环境」、「找寻梦想」、「生涯抉择」以及「培养实务能力」一次统统完成,其中当然还少不了「读书考试」。
欧美的教育偏向素质教育,相对于偏重考试的应试教育而言,较为注重体育、艺术能力和多元智能的培养,而真正的素质教育,目的在于让学生能发挥个人潜能,各 展所长,并培养良好的品格,并不局限于学术上的才能。台湾的教育能够筛选出很会考试(甚至还不见得会「读书」哦)的学生,连公务系统都极度依赖考试,虽然 有好些公家工作几乎不需要考试的技能。可是因为考试实在太浮滥,使得疲于奔命的教师能好好用心出题的时间都被严重压缩,连有没有认认真真地好好考考学生各 方面的学术能力都成问题,更甭提学术能力也非社会所需的全部。
另外一个差异是,台湾的教育太过注重标準答案,可是严重扼杀学生的创意。但是欧美的教育很注重个人的启发,所以顶尖的人才在欧美的教育环境,往往可以更容 易发挥出他们的潜力,表现出他们充沛的创造力。可是他们的对素质一般的学生,反正做得不见得比台湾好。台湾的教育环境,让学生拚命练习考试、练习考试再练 习考试,让学生的程度比起欧美整齐的多。以我和朋友们在美国唸博班当助教的经验来看,台湾学生的程度差异在一个班中,算是比较整齐的,成绩优劣几乎凭个人 努力付出多寡。可是在美国大学,尤其是公立学校,大部分的学生,在数理方面真的很不行!
举个例子来说,我们常常看到学生在实验数据中,他们尝试要把上吨的盐溶在小烧杯裡,或者把实验桌上的小铅球射上火星,因为连单位都搞错了Orz 有位老师在普通生物学考题上问学生什么是pH值,居然有四分之一的学生选择「它不存在」;还有老师指出,大四的学生,居然有两成回答果蝇的基因数量是小于 一,另外两成写无穷大(正确数目大约是一万多),他说那四成学生基本上是「完全的废物」;还有很多搞笑的事,真是罄竹难书。面对这些学生,教授们的态度往 往是「放弃」,可是大数据或许能让这情势反转。
台湾的教育环境,往往比欧美更善待中上程度的学生,用严酷的练习考试来磨练他们的能力,可是却严重地忽略了顶尖人材的教育,而且也几乎完全没有为培养社会 各界的领袖所準备。台湾的大学,就算连顶尖的台大和清大,大致上都还是停留在训练优异的干部为主,教授的教学方式和内容,和其他大部分的大学几乎没差太 多,顶多深度有一些差异而已。可是,就拿美国来说,顶尖大学的目标是在培养顶尖的领袖!一流大学的目标是在培养社会各界菁英、二流大学的是在培养优异的干 部、叁流大学的是在培养良好的基层员工等等。所以,很不幸的,台湾的大学可能在培养优异的干部上很称职,可是要成为社会各界菁英,就只能靠学生自己的努力 和见识,领袖的话就算了。
要培养出优异的干部,大数据的应用应该有其优势,可是社会菁英和领袖的培养,大数据或许无用武之地,因为大据数无法告诉你过去未曾发生的事情,也无法预测 和产生出创新,因此对于台湾的教育,大数据可以提高学生的学业,可是五育的训练,以及领袖和社会菁英的培养,我们可能先不要去思考什么大数据之类的,先从 整体教育环境下手才比较实际。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12