
大数据应用 信用评分及模型原理解析
虽然人人都可以通过对借款方在Lending Club和Prosper上的历史借贷数据进行分析,但我相信,了解消费信贷行为、评分机制和贷款决策背后的工作原理可以帮助投资人更好的在市场中进行决策,获得收益。
消费信贷一直是推动世界领先国家经济转型的主要力量。在过去的50年里,消费开支也因此有所增加。根据纽约联邦储备银行家庭债务和信用季度报告,2014年8月,消费者负债总额为11.63万亿美元,其中74%为按揭和净值贷款,10%为学生贷款,8%为汽车贷款,以及6%为信用卡债务。消费信贷需求增长率极高,自动化风险评估系统势在必行。
信用评分最早始于上世纪50年代初。信用评分最初使用统计学方法来区分优秀和不良贷款。最初,信用评分的重点是是否要给贷方发放贷款,后来,这种行为转变成了申请人评分(applicant scoring)。信用评分借着申请人评分这一项成为了一项成功的评价系统。
在信用评分中,信贷价值假设会在未来的几年保持稳定,贷方会对申请人是否会在未来的12个月内出现90天以上的逾期支付进行评估。申请成功时申请人的最低评分是该分值边际良好和不良贷款几率相比而来,即会额外通过的优秀贷款与不良贷款的比例。申请者贷款1-2年以来的数据,加上相应的信用记录将帮助建立申请者未来2年左右的申请评分模型。
行为评分(Behavioral scoring),是申请人评分的一个补充,旨在评估申请人在过去一年中支付和购买行为的状况。 此数据用于预测未来12个月的违约风险情况,通常每个月更新一次数据。最近表现和当前信贷信息比最开始的申请信息更为重要。
比起违约风险,如今贷款方更加注重能满足他们盈利目标的贷款战略。他们可以选择贷款额、利率及其他条款,从而最大限度地提高盈利能力。基于盈利能力而做出决策的技术分析叫做利润评分(profit scoring)。
与可使用静态信用评分模式的申请人评分不同,行为评分和利润评分需要使用动态信用评分模式,即要将过去的信贷行为纳入考虑范围。 一般来说,信用评分模型会分别为每一笔借贷建模。但是,由于借款人贷款组合违约情况(信用风险)增高,所借款项的重要性便今非昔比了。目前为止没有广泛接受的用于评估贷款组合的信用风险模型。
您可以通过评估系统识别优秀及不良贷款的能力,预测概率的精确性以及分类预测的准确性这三点来评估一个信用评分模型。
贷款人的主要目标是在其投资组合中获得利润最大化。对于任何一笔贷款中,投资人都需要考虑贷款回报额。投资100美元,获利10美元显然不如投资25美元,获得3美元回报。
有些情况下,借款人无法偿还贷款,这就意味着贷款人甚至会面临重大损失。我们可以通过分析投资组合违约率及违约结果对风险进行量化。贷款人还可以将风险和回报设定在预期的范围内。
最终是否投资给借款人需要基于一系列决策:即哪些信息将有助于作出决策,在决策过程期间和之后贷款会有何发展以及最终可能出现的结果。
影响图网用可视化的图形帮助投资人了解主要决策、不确定性、相关信息以及最终成果是如何相互影响的。
影响图网可以确定决策的重要方面,有哪些数据与决策相关,以及在哪些方面有关。图网包括三种节点:决策(长方形节点),不确定事件(圆形节点),以及结果(菱形节点)。各节点由箭头相互连接。图1从市场中贷款人的角度进行绘制。
图1中,首先,贷款人获得借款人是否会有良好表现的贷款预测。预测是随机事件,因为贷款人不能决定预测的结果。它将影响投资与否(Loan or not)的决策,也会影响借款人的表现(Borrower good or bad)。接着,平台将决定是否发布贷款(Loan issued or not)。这对贷款人来说是随机事件。除非该贷款没有得到足够的贷款人支持,否则贷款人对是否发布贷款没有决定权或影响力。贷款一旦发布,贷款人就可以检验收入证明(Income verification)执行情况,查看FICO分数及还款记录(FICO score and payment history.)是否有变化,并更新贷款预测。根据更新后的贷款预测,贷款人可以决定是否要在FILOfn二级交易平台上卖出贷款。类似的,其他贷款人也可以在二级交易平台上很据更新的贷款预测决定是否买入贷款。这一系列事件会最终影响贷款人的收益。
决策树确定贷款中有哪些最优决策,并按照决策过程中信息的了解顺序来解析决策的各个步骤。
那么决策树模型又是如何根据可视化影响图网中的结构逐渐形成的呢?决策树与影像图网的结构类似。其结果由以数字代表的回报事件表示。每个机会节点(不确定事件)都被赋予一定比重,比重代表事件结果发生的可能性。
从结果点开始往回推,经过所有决策及不确定事件的节点后,可以计算出每个结果的预期货币值(EMV)。
图2是一个简单的贷款决策的决策树。贷款人对是否进行投资做出了一份初期判断。如果贷款人不愿投资,则回报是0。如果贷款人投资,则有两种可能:投资回报良好,或不好(即违约)。
假设,借款人回报良好时,贷款人获益10,借款人违约时,贷款人则损失100。如果违约可能性是5%,并且贷款人愿意投资,则贷款人可能从借款人处获益:
0.95 x 10 + 0.05 x (-100) = 4.5
如果贷款人不愿投资,则获益为0。因此,决策树显示贷款人应该进行投资。如果违约的可能性增加到10%,则贷款人可能从借款人处获益:
0.90 x 10 + 0.10 x (-100) = -1
因此,决策树显示贷款人不应该进行投资。
综上所示,如果g代表贷款人收益,l代表因借款人违约导致的贷款人损失,p代表投资回报良好的可能性,那么根据预期货币值(EMV)的标准,只有 pg – (1-p)l > 0时,贷款人应该进行投资。
p/(1-p)即投资回报良好的可能性与违约可能性的比值,也称为良莠比(good:bad odds)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09