
中国企业的数据管理到底有多糟?
在今天的大数据时代,数据管理对于企业获取和了解客户,提高经营效率都起到至关重要的作用,但遗憾的是,中国企业的数据管理实践的成熟度普遍很低。Forrester企业架构专家Charlie Dai为此撰写了一篇题为“中国企业的数据管理到底有多糟”的博文,指出中国不但是一个人口大国,也是一个数据大国,移动和云计算让中国企业面临的大数据挑战格外严峻,但中国企业的数据管理成熟度却低得可怜。IT经理网将原文翻译整理如下,供中国的企业管理者参考。
我最近与同事,高级分析师Michele Goetz进行了一次颇具启发性的谈话,话题包括了数据管理的方方面面。席间Goetz指出北美和欧洲企业的数据管理成熟度个体差异非常大。只有5%的企业拥有强健的数据管理基础架构和成熟的数据管理实践规范。大多数公司正试图变得更加敏捷,但是缺少评估标准,即使他们已经部署了数据管理平台。很少有企业能够将组织架构与业务或信息策略进行很好的匹配。
当我们把目光投向中国企业,结果更加糟糕:只有不到1%的中国企业具备成熟的数据集成策略、敏捷执行和持续业绩评估。尤其是:
数据管理实践还处于非常初级的阶段
数据管理不仅仅是部署数据仓库或相关中间件,还意味着相关战略和架构实践,包括情景服务和元数据模型,让数据管理最终与业务目标匹配。中国企业目前的数据管理关注重点几乎都是围绕数据仓库、主数据管理和对端到端业务流程与决策支持应用开发的支持,尚无法在业务流程和业务分析中充分发挥数据的价值。
不同行业的数据管理成熟度差异大
与北美类似,中国的银行和金融服务业是最早实施数据管理项目的行业,也是数据管理应用的领导者。管理部门如银监会是少数明确发布数据安全保护等数据管理政策的国家行政部门,引导行业数据管理方案达到管理部门的要求。然而,在很多其他行业,例如零售、制造、健康和能源,数据还分散在不同的异构系统中,缺乏全面和有效的管理。
大数据的大问题随着云计算和移动化而变得更加严峻
中国的庞大人口正产生海量数据,这对于中国企业的CIO和系统架构师来说都是一个巨大的挑战。中国联通一个省的OA系统就有三万用户,而不久的将来这些分散的系统需要迁移到一个集中化的管理平台。而亚太地区最大的在线零售商淘宝网则需要每天处理30TB的数据。来自手机和混合云的数据的爆炸式增长(包括结构化和非结构化数据)将成为中国企业管理者的重大命题。
关于大数据企业需知的六大问题
关于云计算,CEO需要知道什么?
乱世下的企业IT新思维
数据管理做好非常难,但是当市场变得更加瞬息万变,竞争加剧,监管升级,中国的企业家们需要开始认真考虑制定并执行数据管理战略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10