京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业需要什么样的数据科学家
大数据是当今最热门的IT概念,存储、处理、分析大数据的解决方案都层出不穷,Hadoop更是让企业低成本处理大数据成为可能,但是大数据最大的问题不是工具,而是人才短缺。数据科学家DJ Patil曾经在LinkedIn、Skype、eBay和Paypal等公司就职,对企业需要什么样的数据科学家,以及数据科学家对今日企业之创新和竞争力的意义都有深刻见解。
互联网企业的秘密武器
LinkedIn数据分析人才岗位的历史增长 数据来源:LinkedIn
Patil认为,最先成功挖掘数据价值的无疑是在线零售商,亚马逊是这个领域的带头羊,高人一等的商品推荐技术已经成为亚马逊的核心竞争力。此外社交网站的成功也非常依赖数据科学家。例如Facebook通过复杂的追踪和分析技术,能判断出一个用户最少需要多少个Facebook好友才有可能成为长期用户。于是Facebook在其产品设计中,尽量让用户在一个可以接受的时间跨度内找到足够多的联系人。
在线视频租赁公司Netflix的数据科学家们可以判断出,当一个客户在租看多少部电影后将有可能发展成长期客户。Paypal和美国运通则依赖数据分析来进行欺诈检测,减少信用欺诈。
网络游戏公司Zynga通过分析用户数据来识别一个游戏让用户沉迷的引爆点。通过分析用户在一个新游戏中头几天搭建的房屋数量、杀死的怪物数量,Zynga能判断出该用户成为长期用户的几率。Zynga反过来也会调整产品设计,让用户更容易完成那些会导致他们欲罢不能的“战绩”。
企业需要什么样的数据科学家
企业需要的数据人才大致分为几类,主要包括产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较新的领域。在安全和风险分析方面,数据科学家们知道需要收集哪些数据、如何进行快速分析,并最终通过分析信息来有效遏制网络入侵或抓住网络罪犯。
Patil认为,一位优秀的企业数据科学家需要具备的基本素质包括:技术经验、好奇心、会讲故事等。
但最根本的问题依然是人才短缺,一将难求:“我所工作过的每一家企业都为招聘合适的数据人才而头疼,通常面临两类选择,要么招募拥有多领域经验和知识结构的数据分析专家,要么从大学招聘天资不错的毕业生,让他们在实习中成长。”Patil警告那些将数据分析团队等闲视之的企业领导:“数据分析是一项高度创造性的工作,数据科学家团队的成员之间需要沟通融洽、相互信任,让一堆天才之间默契合作并不容易,不过这也是挑战和乐趣所在。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12