京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据化爱情:男生追女生的超强数学建模分析
问题分析
男生追女生,对男生来说最重要的是学习、爱情两不误。因此我们引进男生的学业成绩函数Y(t)。
首先,我们不考虑男生的追求攻势,则影响该函数的因素主要是两个人的关系程度。为了便于分析,我们将两人的关系简化为女生对该男生的疏远度,于是引入疏远度函数X(t)。
问题就转化为求解Y(t)和X(t)的相互作用关系。利用微分,很容易就可以求出两者的关系。但现实中男生可能会对该女生发起一轮轮的追求攻势,因此还要考虑到追求攻势对模型的影响。而追求攻势又与女生的疏远度有关,可以简化地将两者看成是正比关系。将追求攻势加入到模型中,就可以找出攻势与Y(t)和 X(t)的关系了。
模型假设
1、t时刻A君的学业成绩为Y(t);
2、t时刻B女对A君的疏远度为X(t);
3、当A君没开始追求B女时B女对A君的疏远度增长(平时发现的A君的不良行为)符合Malthus模型,即dX/dt=aX(t)其中a为正常数。
4、当Y(t)存在时,单位时间内减少X(t)的值与X(t)的值成正比,比例常数为b,从而 dX(t)/dt=aX(t)-bX(t)Y(t)。
5、A君发起对B女追求后,立即转化为B女对A君的好感,并设定转化系数为 α,而随着的A君发起对B女的追求,A君学业的自然下降率与学业成绩成正比,比例系数为e。于是有dY(t)/dt=αbX(t)Y(t)-eY(t)。
模型构成
由假设4和假设5,就得到了学业与疏远度在无外界干扰的情况下互相作用的模型:
{dX(t)/dt=aX-bXY;dY(t)/dt=cXY-eY} 其中c=αb. (1)
这是一个非线性自治系统,为了求两个数X与Y的变化规律,我们对它作定性分析。令{aX-bXY=0;cXY-eY=0} 解得系统(1)的两个平衡位置为:O(0,0),M (e/c,a/b)。从(1)的两方程中消去dt,分离变量可求得首次积分:
F(X,Y)=cX-dln|X|-aln|Y|=k (2)
容易求出函数F(X,Y)有唯一驻点为M(e/c,a/b)。再用极值的充分条件判断条件可以判断M是F的极小值点。同时易见,当X→∞(B女对A君恨之入骨)或Y→∞ (A君是一块只会学习的木头)时均有F→∞;而X→0(A君作了变形手术,B女对他毫无防备)或Y→0(A君不学无术,丝毫不学习)时也有F→∞。由此不难看出,在第一象限内部连续的函数z=F(X,Y)的图形是以M为最小值点,且在第一卦限向上无限延伸的曲面,因而它与z=k(k>0)的交线在相平面 XOY的投影F(X,Y)=k (k>0)是环绕点M的闭曲线簇。这说明学业成绩和疏远度的指数成周期性变化。
结果解释
从生态意义上看这是容易理解的,当A君的学习成绩Y(t)下降时,B女会疏远 A君,疏远度X(t)上升;于是A君就又开始奋发图强,学习成绩Y(t)又上升了。于是B女就又和A君开始了来往,疏远度X(t)又下降了。与B女交往多了,当然分散了学习时间,A君的学习成绩Y(t)下降了。
然而我们可证明,尽管闭轨线不同,但在其周期内的X和Y的平均数量都分别是一常数,而且恰为平衡点M的两个坐标。事实上,由(1)的第二个方程可得: dY/Ydt=cX- e,两端在一个周期时间T内积分,得:
∫(dy/Ydt)dt=c∮Xdt-dT (3)
注意到当t经过一个周期T时,点(X,Y)绕闭轨线运行一圈又回到初始点,从而:∫(dY/Ydt)dt=∮dY/Y=0。所以,由(3)式可得: (∫Xdt)/T=e/c。
同理,由(1)的第一个方程可得:(∫Ydt)/T=a/b。
模型优化
考虑到追求攻势对上述模型的影响。设追求攻势与该时刻的疏远度成正比,比例系数为h,h反映了追求攻势的作用力。在这种情况下,上述学业与疏远度的模型应变为:
{dX/dT=aX-bXY-hX=(a-h)X-bXY;dY/dt=cXY-eY-hY=cXY-(e+h)Y} (4)
将(4)式与(1)式比较,可见两者形式完全相同,前者仅是把(1)中X与Y的系数分别换成了a-h与e+h。因此,对(4)式有
x’=(∫Xdt)/T=(e+h)/c,y’=(∫Ydt)/t=(a-h)/b (5)
利用(5)式我们可见:攻势作用力h的增大使X’增加,Y’减少。
我们的建议
考试期间,由于功课繁忙,使得追求攻势减少,即h减小,与平时相比,将有利于学业成绩Y的增长。这就是Volterra原理。 此原理对男生有着重要的指导意义:强大的爱情攻势有时不一定能达到满意的效果,反而不利与学业的成长;有时通过慢慢接触,慢慢了解,再加上适当的追求行动,女生的疏远度就会慢慢降低。学习成绩也不会降低!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12