
如若问起现在处于怎样的时代,想必你会脱口而出”互联网时代”,其实,“互联网的时代”早已变了性质。由于移动互联网的极速扩张,“人”已经更多地融入到了互联网之中,海量用户行为数据由此产生,“大数据时代”到来了。引用麦肯锡对于“大数据”时代的形容,“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产要素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
大数据时代银行所面临的挑战
在这个大数据的时代,巨头互联网企业都开始涉足金融行业,且不断推出新的产品、新的商业模式、并拥有更好的用户体验,传统银行业务正在逐渐被蚕食。为何传统金融业巨鳄银行一步步被互联网企业逼到必须要奋起直追,原因有很多,是时代的原因、技术的原因、消费者需求的不断改变……其总结起来有几下几点:
1、互联网击碎了空间的阻碍,使得客户对物理距离的敏感度越来越强。
2、客户对金融服务的需求是不分时间的全天候、实时的业务需求。
3、客户获取信息的渠道和范围已经大大增加。客户已经不再被动选择,而是追求更加个性化的产品和服务,并根据搜集来的各种信息做出判断、随时分享,将个人体验的影响扩大到更大范围的群体之中。
4、互联网企业通过客户在互联网上留下的海量足迹,进行挖掘与运用,大胆进行金融转型,通过大数据主动了解客户需求。
5、互联网企业具有互联网场景入口的优势,触达客户更为精准。
在大数据时代,金融企业也需要互联网化。而传统银行,必须走下神坛,积极地寻找客户、了解客户、服务客户。
电子银行的困局
在这样的背景下,传统银行也奋起直追,在寻求转型的出路,电子银行应运而生。但目前,传统银行互联网化的步伐仅仅是增加了一个互联网渠道,如开设网上银行、手机银行等,互联网和大数据的价值并未真正体现,比如,银行为客户提供手机银行APP、提供了网银,但客户不会去开通和使用。
传统银行如何正确地互联网化、如何有效利用大数据改善银行与用户的沟通、如何让大数据结合场景帮助传统银行更好地运作,这些问题都亟待解决。
大数据如何帮助电子银行面对挑战?
目前,大数据助力电子银行主要通过四个方面:1、拓宽数据广度与维度,让电子银行更了解客户;2、对大数据专业化的应用,让电子银行能够为客户定制金融服务;3、通过大数据帮助电子银行定位客户偏好产品;4、通过大数据帮助电子银行定位客户偏好场景。5、通过大数据帮助电子银行精准营销。
以集奥聚合为例,不仅可以为商业银行客户提供了各类时效性应用标签,还通过安排专业的数据分析师的驻场方式,与客户一起深入剖析阻力,帮助客户分析大数据,应用大数据,并根据电子银行部的业务目标,对手机银行潜在客户进行行为分析,洞察客户习惯偏好,健全潜在客户画像,帮助客户锁定手机银行潜在客户高频生活场景,筛选更低成本、更高回报的合作商户及权益,并输出专业的分析报告。协助该银行找到了最合适电子银行部目标客群的合作商户,并进行合作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10