
数据分析:手把手教你做客户价值分群
当前各企业对客户关系管理(CRM)显得尤为关注,只有不断地保留并增加老客户黏性及挖掘潜客新客户,才能使企业生存的更好,更久。说到CRM,我刚开始接触的就是RFM模型,通过该模型将客户分为高价值、潜在价值和低价值。当每一个用户打上不同的价值标签时,就可以有针对性的实施营销策略,将有限的资源投入到高价值客户中,产生最大的利润。有关RFM模型,曾写过一篇实战: RFM模型使用(可点击查看)。
下文将有别于《实战: RFM模型使用》,在计算价值标签时,避免人为干扰,通过聚类的方法将目标人群分为三六九等。具体我们通过下面的实例来说明。
本文应用到的实例数据来源于《R语言数据分析与挖掘实战》一书,数据为某航空公司会员信息及乘机信息,通过构建LRFMC模型,实现客户价值分群。
我们说RFM模型由R(最近消费时间间隔)、F(消费频次)和M(消费总额)三个指标构成,通过该模型识别出高价值客户。但该模型并不完全适合所有行业,如航空行业,直接使用M指标并不能反映客户的真实价值,因为“长途低等舱”可能没有“短途高等舱”价值高;如网吧行业,可能“长在线时长低时单价”客户比“短在线时长高时单价”客户价值还高,因为网吧更希望看到是客户来的次数及上网时长。所以得根据实际行业灵活调整RFM模型的指标,本文就拿航空公司的数据为例,将RFM模型构建成L(入会至当前时间的间隔,反映可能的活跃时长)、R(最近消费时间距当前的间隔,反映当前的活跃状态)、F(乘机次数,反映客户的忠诚度)、M(飞行里程数,反映客户对乘机的依赖性)和C(舱位等级对应的折扣系数,侧面反映客户价值高低)5个指标。下面就利用这5个指标进行客户价值分群的实战:
#读取航空数据
flight <- read.csv(file = file.choose())
#查看数据结构及概览
dim(flight)
names(flight)
该数据集包含了62988条会员记录,涉及会员号、入会时间、首次登机时间、性别等44个字段。发现这么多字段中,正真能使用到的字段只有FFP_DATE(入会时间)、LOAD_TIME(观测窗口结束时间,可理解为当前时间)、FLIGHT_COUNT(乘机次数)、SUM_YR_1(票价收入1)、SUM_YR_2(票价收入2)、SEG_KM_SUM(飞行里程数)、LAST_FLIGHT_DATE(最后一次乘机时间)和avg_discount(舱位等级对应的平均折扣系数)。下面来看一下这些数据的分布情况:
vars <- c('FFP_DATE','LOAD_TIME','FLIGHT_COUNT','SUM_YR_1','SUM_YR_2','SEG_KM_SUM','LAST_FLIGHT_DATE','avg_discount')
flight2 <- flight[,vars]
summary(flight2)
发现数据中存在异常,如票价收入为空或0、舱位等级对应的平均折扣系数为0。这样的异常可能是由于客户没有实际登机造成,故考虑将这样的数据剔除。具体操作如下:
#剔除异常数据
attach(flight2)
clear_flight <- flight2[-which(SUM_YR_1==0 | SUM_YR_2==0 | is.na(SUM_YR_1)==1 | is.na(SUM_YR_2)==1 | avg_discount==0),]
#查看数据字段类型
str(clear_flight)
发现三个关于时间的字段均为因子型数据,需要将其转换为日期格式,用于下面计算时间差:
clear_flight$FFP_DATE <- as.Date(clear_flight$FFP_DATE)
clear_flight$LOAD_TIME <- as.Date(clear_flight$LOAD_TIME)
clear_flight$LAST_FLIGHT_DATE <- as.Date(clear_flight$LAST_FLIGHT_DATE)
数据清洗完后,需要计算上面提到的LRFMC五个指标,具体脚本如下:
#L:入会至当前时间的间隔
#R:最近登机时间距当前的间隔
clear_flight <- transform(clear_flight, L = difftime(LOAD_TIME,FFP_DATE, units = 'days')/30, R = difftime(LOAD_TIME,LAST_FLIGHT_DATE, units = 'days')/30)
str(clear_flight)
发现L和R这两个指标并不是数值型数据,而是difftime型,故需要将其转换为数值型:
clear_flight$L <- as.numeric(clear_flight$L)
clear_flight$R <- as.numeric(clear_flight$R)
#查看数据结构
summary(clear_flight)
发现缺失值,这里仍然将其剔除:
clear_flight <- clear_flight[-which(is.na(clear_flight$LAST_FLIGHT_DATE)==1),]
目前5个指标值都有了,下面就需要根据每个客户的5个值对其进行分群,传统的方法是计算综合得分,然后排序一刀切,选出高价值、潜在价值和低价值客户。现在所使用的方法是k-means聚类算法,避免了人为的一刀切。由于k-means聚类算法是基于距离计算类与类之间的差别,然而这5个指标明显存在量纲上的差异,故需要标准化处理:
#数据标准化处理
standard <- data.frame(scale(x = clear_flight[,c('L','R','FLIGHT_COUNT','SEG_KM_SUM','avg_discount')]))
names(standard) <- c('L','R','F','M','C')
标准化数据之后,就可以使用k-means聚类算法将客户进行聚类,问题是该聚为几类呢?根据传统的RFM模型,将价值标签分为8类,即:
不妨我们就将客户分类8个群体,即:
#k-means聚类,设置聚类个数为8
set.seed(1234)
clust <- kmeans(x = standard, centers = 8)
#查看8个类中各指标均值情况
centers <- clust$centers
centers
#查看8个类中的会员量
table(clust$cluster)
上图反馈了客户的聚类结果,但是从数据中很难快速的找出不同价值的客户,下面通过绘制雷达图来反映聚类结果:
#绘制雷达图
install.packages('fmsb')
library(fmsb)
max <- apply(centers, 2, max)
min <- apply(centers,2,min)
df = data.frame(rbind(max,min,centers))
radarchart(df = df, seg=5, plty=1,vlcex=0.7)
从图中可知,黄色线是价值最高的,F和M值对应最高,C值次高,属于第7组人群;价值次高的是绿色线人群,即第5组,该人群特征是C值最大;以此类推,灰色线人群的价值最低,雷达图所围成的面积最小。还有一种办法能够最快的识别出价值由高到低的8类人群,即对8个人群各指标均值求和排序即可,因为数据都是标准化的,不受量纲影响,可直接求和排序:
order(apply(centers,1,sum),decreasing = TRUE)
结果显示第7组人群最佳、其次是第5组人群,最差的是第8组人群。通过对比centers结果,能够很好的反映8组人群的价值高低:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10