
R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。
前言
R语言不仅在统计分析,数据挖掘领域,计算能力强大。在数据可视化上,也不逊于昂贵的商业。当然,背后离不开各种开源软件包的支持,Cairo就是这样一个用于矢量图形处理的类库。
Cairo可以创建高质量的矢量图形(PDF, PostScript, SVG) 和 位图(PNG, JPEG, TIFF),同时支持在后台程序中高质量渲染!
本文将介绍,Cairo在R语言中的使用。
目录
Cairo介绍
Cairo安装
Cairo使用
1. Cairo介绍
在信息领域中,cairo 是一个让用于提供矢量图形绘图的免费库,cairo 提供在多个背景下做 2D 的绘图,高级的更可以使用硬件加速功能。
虽然 cairo 是使用C语言撰写的,但是当使用 cairo 时,可以用许多其他种语言来使用,包括有 C++、C#、Java、Python、Perl、Ruby、Scheme、Smalltalk 以及许多种语言,cairo 在 GNU LGPL 与 Mozilla Public License (MPL) 两个认证下发布。
2. Cairo安装
系统环境
Linux: Ubuntu 12.04.2 LTS 64bit
R: 3.0.1 x86_64-pc-linux-gnu
Cairo基本库安装
~ sudo apt-get install libcairo2-dev
~ sudo apt-get install libxt-dev
~ R
> install.packages("Cairo")
** R
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded
Warning: ignoring .First.lib() for package ‘Cairo’
* DONE (Cairo)
Cairo使用起来非常简单,和基础包grDevices中的函数对应。
CairoPNG: 对应grDevices:png()
CairoJPEG: 对应grDevices:jpeg()
CairoTIFF: 对应grDevices:tiff()
CairoSVG: 对应grDevices:svg()
CairoPDF: 对应grDevices:pdf()
我常用的图形输出,就是png和svg。
检查Cairo的兼容性:
~ R
> library(Cairo)
> Cairo.capabilities()
png jpeg tiff pdf svg ps x11 win raster
TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
下面比较一下 CairoPNG() 和 png() 输出效果。
1). 散点图
x<-rnorm(6000)
y<-rnorm(6000)
# PNG图
png(file="plot4.png",width=640,height=480)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot")
dev.off()
CairoPNG(file="Cairo4.png",width=640,height=480)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo")
dev.off()
# SVG图
svg(file="plot-svg4.svg",width=6,height=6)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot-svg")
dev.off()
CairoSVG(file="Cairo-svg4.svg",width=6,height=6)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo-svg")
dev.off()
以下为PNG图:
2). 三维截面图
x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
# PNG图
png(file="plot2.png",width=640,height=480)
op <- par(bg = "white", mar=c(0,2,3,0)+.1)
persp(x, y, z,
theta = 30, phi = 30,
expand = 0.5,
col = "lightblue",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
main = "Plot"
)
par(op)
dev.off()
CairoPNG(file="Cairo2.png",width=640,height=480)
op <- par(bg = "white", mar=c(0,2,3,0)+.1)
persp(x, y, z,
theta = 30, phi = 30,
expand = 0.5,
col = "lightblue",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
main = "Cairo"
)
par(op)
dev.off()
以下为PNG图:
3). 文字显示
library(MASS)
data(HairEyeColor)
x <- HairEyeColor[,,1]+HairEyeColor[,,2]
n <- 100
m <- matrix(sample(c(T,F),n^2,replace=T), nr=n, nc=n)
# PNG图
png(file="plot5.png",width=640,height=480)
biplot(corresp(m, nf=2), main="Plot")
dev.off()
CairoPNG(file="Cairo5.png",width=640,height=480)
biplot(corresp(m, nf=2), main="Cairo")
dev.off()
# SVG图
svg(file="plot-svg5.svg",width=6,height=6)
biplot(corresp(m, nf=2), main="Plot-svg")
dev.off()
CairoSVG(file="Cairo-svg5.svg",width=6,height=6)
biplot(corresp(m, nf=2), main="Cairo-svg")
dev.off()
以下为PNG图:
我们查看两个文件的属性:以png直接生成的图54KB,以CairoPNG生成的图43.8KB。
综上的3个例子,我分辨不出太大区别,只是Cairo感觉更淡、更柔和一些。
大家不妨找一些更复杂的图形来尝试着比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10