京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。
前言
R语言不仅在统计分析,数据挖掘领域,计算能力强大。在数据可视化上,也不逊于昂贵的商业。当然,背后离不开各种开源软件包的支持,Cairo就是这样一个用于矢量图形处理的类库。
Cairo可以创建高质量的矢量图形(PDF, PostScript, SVG) 和 位图(PNG, JPEG, TIFF),同时支持在后台程序中高质量渲染!
本文将介绍,Cairo在R语言中的使用。
目录
Cairo介绍
Cairo安装
Cairo使用
1. Cairo介绍
在信息领域中,cairo 是一个让用于提供矢量图形绘图的免费库,cairo 提供在多个背景下做 2D 的绘图,高级的更可以使用硬件加速功能。
虽然 cairo 是使用C语言撰写的,但是当使用 cairo 时,可以用许多其他种语言来使用,包括有 C++、C#、Java、Python、Perl、Ruby、Scheme、Smalltalk 以及许多种语言,cairo 在 GNU LGPL 与 Mozilla Public License (MPL) 两个认证下发布。
2. Cairo安装
系统环境
Linux: Ubuntu 12.04.2 LTS 64bit
R: 3.0.1 x86_64-pc-linux-gnu
Cairo基本库安装
~ sudo apt-get install libcairo2-dev
~ sudo apt-get install libxt-dev
~ R
> install.packages("Cairo")
** R
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded
Warning: ignoring .First.lib() for package ‘Cairo’
* DONE (Cairo)
Cairo使用起来非常简单,和基础包grDevices中的函数对应。
CairoPNG: 对应grDevices:png()
CairoJPEG: 对应grDevices:jpeg()
CairoTIFF: 对应grDevices:tiff()
CairoSVG: 对应grDevices:svg()
CairoPDF: 对应grDevices:pdf()
我常用的图形输出,就是png和svg。
检查Cairo的兼容性:
~ R
> library(Cairo)
> Cairo.capabilities()
png jpeg tiff pdf svg ps x11 win raster
TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
下面比较一下 CairoPNG() 和 png() 输出效果。
1). 散点图
x<-rnorm(6000)
y<-rnorm(6000)
# PNG图
png(file="plot4.png",width=640,height=480)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot")
dev.off()
CairoPNG(file="Cairo4.png",width=640,height=480)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo")
dev.off()
# SVG图
svg(file="plot-svg4.svg",width=6,height=6)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot-svg")
dev.off()
CairoSVG(file="Cairo-svg4.svg",width=6,height=6)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo-svg")
dev.off()
以下为PNG图:
2). 三维截面图
x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
# PNG图
png(file="plot2.png",width=640,height=480)
op <- par(bg = "white", mar=c(0,2,3,0)+.1)
persp(x, y, z,
theta = 30, phi = 30,
expand = 0.5,
col = "lightblue",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
main = "Plot"
)
par(op)
dev.off()
CairoPNG(file="Cairo2.png",width=640,height=480)
op <- par(bg = "white", mar=c(0,2,3,0)+.1)
persp(x, y, z,
theta = 30, phi = 30,
expand = 0.5,
col = "lightblue",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
main = "Cairo"
)
par(op)
dev.off()
以下为PNG图:
3). 文字显示
library(MASS)
data(HairEyeColor)
x <- HairEyeColor[,,1]+HairEyeColor[,,2]
n <- 100
m <- matrix(sample(c(T,F),n^2,replace=T), nr=n, nc=n)
# PNG图
png(file="plot5.png",width=640,height=480)
biplot(corresp(m, nf=2), main="Plot")
dev.off()
CairoPNG(file="Cairo5.png",width=640,height=480)
biplot(corresp(m, nf=2), main="Cairo")
dev.off()
# SVG图
svg(file="plot-svg5.svg",width=6,height=6)
biplot(corresp(m, nf=2), main="Plot-svg")
dev.off()
CairoSVG(file="Cairo-svg5.svg",width=6,height=6)
biplot(corresp(m, nf=2), main="Cairo-svg")
dev.off()
以下为PNG图:
我们查看两个文件的属性:以png直接生成的图54KB,以CairoPNG生成的图43.8KB。
综上的3个例子,我分辨不出太大区别,只是Cairo感觉更淡、更柔和一些。
大家不妨找一些更复杂的图形来尝试着比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12