
关于大的内容已经铺天盖地了,其中包括很多能够让人们从中得到启发和洞察的数据科学观点,尤其是在这数据量极其丰富的 市场行业中,这样的文章不胜枚举。
在人们谈论了很多关于 的话题之后,那么小数据现在的境况如何呢?如果你的手中的数据量很少,甚至谈不上大数据的话,我们又将从这少量的数据当中得到怎样的启发呢?那么小数据什么时候可以适合市场、竞争对手以及采购商的研究需求呢?
作为一名偏差幅度”。 研究人员,我对采购商、市场以及竞争对手的研究已有将近20年的时间,很多人都问过我这样的问题:到底需要多少数据观点才能让我们做出的决策“好的不要要不的”。其实,从事消费者市场研究的客户们都期待得到有这样关键词的答案:“可信度”和“
在B2B研究领域当中,研究人员经常会通过三角剖分方法捕捉采购商反馈的细节,对于每个项目而言,获取10个数据观点就能够得到对以下方面的洞察:
“10个数据观点怎么就够了呢?”,很多客户一直用这种不相信的语气问我。
伴随着采购商和企业正不断地向供应商提出更加具体的需求,因此B2B市场正在向高度专业化的方向发展。采购商非常明确地知道自己对于产品的功能、价格、服务以及售后支持等方面的需求和期待。
因为定价模式和价格标准当中存在的变量很少,B2B产业通常在市场及细分市场当中都是统一定价。企业已经在保证产品竞争力的前提下制定出了可以让买卖双方接受的利润。
推销综合型B2B平台的销售团队在他们自己的领域当中经验颇丰。他们这些人不仅仅精通自己所销售的解决方案技术,他们所在的公司也会抓取市场、竞争对手乃至定价方面的信息。
B2B的客户管理团队在和那些要求苛刻并且老练的采购商互动时,通常需要具备非常专业和娴熟的技巧。最优秀的B2B代表可能已经拥有十多年的销售经验,而且目前他们也正在不断接受新的培训和教育。
钻研B2B市场的研究人员在了解行业动态和发展成效的时候经常使用各种技术手段。那些采购周期很长(几个月甚至几年)的资深采购人员很少在网上发布一份由一百多个问题组成的意见征求表,因为这种方式在消费者调查当中很常见。相反,研究人员通过对采购专员情感上的细节的探究发现,其实他们更关心的是下面这些问题,包括:
产品/服务质量
销售团队的效率
供应商的看法
定价
当B2B的研究采用网上调查问卷方式进行的话,在调查问卷发布之后,经常还会有后续电话访问,这样可以让研究人员对入围名单当中的供应商的关键性优势和弱势有一个全新的审视,也可以为供应商的取舍提供更多细节方面的参考。
因为大多数的B2B产业研究人员在特定行业和细分市场当中都有很多经验,所以电话随访环节他们经常会问一些充满大智慧的问题,从而得到真正意义上对交易成果的理解。
和B2B采购商之间的交谈就像一场宴会上的谈话一样——这样的对话看起来更像两个行业专家之间反复好几个回合思想碰撞,而不像一个未经培训的研究人员那样照本宣科般生硬的电话访谈。
因为这样的访问大都是被录音的,这样的话,研究人员可以在谈话的过程当中随时思考对方正在说什么,而不会因为做笔记分散注意力,从而更能激发出下一个将要向对方要抛出的问题。
由于B2B市场有着自己的特质并且采取了上文列举的方法,研究人员和经理可以清晰并快速地发现数据当中存在的模式和趋势。下面就介绍几个在我的B2B研究职业生涯当中,利用小数据产生大发现的案例。
医疗保健公司A经过八次访问之后发现,客户最关心的就是A公司产品以及服务的成本和灵活性。他们从中还发现,竞争对手公司正在试图与A公司的客户群建立关系,试图暴露A公司可能存在的瑕疵,并使用竞争活动的方式剥离A公司的客户群。
一家网络储存公司经过九次调查访问后发现,客户认为该公司在市场中提供的服务是比较轻捷便利的。而且客户也对该公司缺少全球范围内7×24小时的客户服务以及缺少和其他行业关键成员之间的整合表示关心。
一家财产保险公司仅仅通过四次与关键客户之间的调查访问后就知道如何对自己进行定位并维持公司的业务,包括更改公司的续约时间政策,修正公司的定价策略,并突出公司的差异化竞争。
随着时间的流逝,企业收集到的越来越多的数据可以有助于公司弥补发展时遇到的空白,还可以帮助公司将困扰自身已久的问题转化成梦寐以求的答案。公司能够而且应该从他们的小数据研究项目当中获取学习总结,并据此找到采取行动的有效方式,尤其是当公司从客户处获得了一致的反馈信息,那么公司就更应该根据这些具体的指导建议做出下一步的发展计划。
千万不要等到你的公司有大数据的时候才想起来从中获取有价值的参考信息,如果等到那时候,你的采购商会因为你而感到很沮丧,同时你的优柔寡断和坐以待毙的行为会为竞争对手提供可乘之机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11