
关于大的内容已经铺天盖地了,其中包括很多能够让人们从中得到启发和洞察的数据科学观点,尤其是在这数据量极其丰富的 市场行业中,这样的文章不胜枚举。
在人们谈论了很多关于 的话题之后,那么小数据现在的境况如何呢?如果你的手中的数据量很少,甚至谈不上大数据的话,我们又将从这少量的数据当中得到怎样的启发呢?那么小数据什么时候可以适合市场、竞争对手以及采购商的研究需求呢?
作为一名偏差幅度”。 研究人员,我对采购商、市场以及竞争对手的研究已有将近20年的时间,很多人都问过我这样的问题:到底需要多少数据观点才能让我们做出的决策“好的不要要不的”。其实,从事消费者市场研究的客户们都期待得到有这样关键词的答案:“可信度”和“
在B2B研究领域当中,研究人员经常会通过三角剖分方法捕捉采购商反馈的细节,对于每个项目而言,获取10个数据观点就能够得到对以下方面的洞察:
“10个数据观点怎么就够了呢?”,很多客户一直用这种不相信的语气问我。
伴随着采购商和企业正不断地向供应商提出更加具体的需求,因此B2B市场正在向高度专业化的方向发展。采购商非常明确地知道自己对于产品的功能、价格、服务以及售后支持等方面的需求和期待。
因为定价模式和价格标准当中存在的变量很少,B2B产业通常在市场及细分市场当中都是统一定价。企业已经在保证产品竞争力的前提下制定出了可以让买卖双方接受的利润。
推销综合型B2B平台的销售团队在他们自己的领域当中经验颇丰。他们这些人不仅仅精通自己所销售的解决方案技术,他们所在的公司也会抓取市场、竞争对手乃至定价方面的信息。
B2B的客户管理团队在和那些要求苛刻并且老练的采购商互动时,通常需要具备非常专业和娴熟的技巧。最优秀的B2B代表可能已经拥有十多年的销售经验,而且目前他们也正在不断接受新的培训和教育。
钻研B2B市场的研究人员在了解行业动态和发展成效的时候经常使用各种技术手段。那些采购周期很长(几个月甚至几年)的资深采购人员很少在网上发布一份由一百多个问题组成的意见征求表,因为这种方式在消费者调查当中很常见。相反,研究人员通过对采购专员情感上的细节的探究发现,其实他们更关心的是下面这些问题,包括:
产品/服务质量
销售团队的效率
供应商的看法
定价
当B2B的研究采用网上调查问卷方式进行的话,在调查问卷发布之后,经常还会有后续电话访问,这样可以让研究人员对入围名单当中的供应商的关键性优势和弱势有一个全新的审视,也可以为供应商的取舍提供更多细节方面的参考。
因为大多数的B2B产业研究人员在特定行业和细分市场当中都有很多经验,所以电话随访环节他们经常会问一些充满大智慧的问题,从而得到真正意义上对交易成果的理解。
和B2B采购商之间的交谈就像一场宴会上的谈话一样——这样的对话看起来更像两个行业专家之间反复好几个回合思想碰撞,而不像一个未经培训的研究人员那样照本宣科般生硬的电话访谈。
因为这样的访问大都是被录音的,这样的话,研究人员可以在谈话的过程当中随时思考对方正在说什么,而不会因为做笔记分散注意力,从而更能激发出下一个将要向对方要抛出的问题。
由于B2B市场有着自己的特质并且采取了上文列举的方法,研究人员和经理可以清晰并快速地发现数据当中存在的模式和趋势。下面就介绍几个在我的B2B研究职业生涯当中,利用小数据产生大发现的案例。
医疗保健公司A经过八次访问之后发现,客户最关心的就是A公司产品以及服务的成本和灵活性。他们从中还发现,竞争对手公司正在试图与A公司的客户群建立关系,试图暴露A公司可能存在的瑕疵,并使用竞争活动的方式剥离A公司的客户群。
一家网络储存公司经过九次调查访问后发现,客户认为该公司在市场中提供的服务是比较轻捷便利的。而且客户也对该公司缺少全球范围内7×24小时的客户服务以及缺少和其他行业关键成员之间的整合表示关心。
一家财产保险公司仅仅通过四次与关键客户之间的调查访问后就知道如何对自己进行定位并维持公司的业务,包括更改公司的续约时间政策,修正公司的定价策略,并突出公司的差异化竞争。
随着时间的流逝,企业收集到的越来越多的数据可以有助于公司弥补发展时遇到的空白,还可以帮助公司将困扰自身已久的问题转化成梦寐以求的答案。公司能够而且应该从他们的小数据研究项目当中获取学习总结,并据此找到采取行动的有效方式,尤其是当公司从客户处获得了一致的反馈信息,那么公司就更应该根据这些具体的指导建议做出下一步的发展计划。
千万不要等到你的公司有大数据的时候才想起来从中获取有价值的参考信息,如果等到那时候,你的采购商会因为你而感到很沮丧,同时你的优柔寡断和坐以待毙的行为会为竞争对手提供可乘之机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07