
在SPSS中进行复选题数据分析
复选题分析(Multiple Response)
最近群里经常有朋友在问;“怎样用SPSS输入多项选择题啊?”于是本人整理以往学习资料,希望这些东西能够帮他们解决问题。
一、复选题分析的原理
(一)复选题分析的限制和用途
复选题在许多问卷或数据收集中经常出现,例如:某家旅行社询问采访者最近一年内,曾经搭乘国内四家航空公司(东方、南方、上海、海南)中的哪几家,这就是一个典型的复选题问题。通常这些复选题只是请受访者构选“有“或”无“,亦即该选项只能建立数据时,以命名尺度的”1“与”0“来呈现,但命名量表是精度最低的测量方式,其会限制这些复选题可使用的统计检验分析方法。
复选题经常被使用,但其通常使用的统计分析只有频次分析表与交叉分析表等描述性统计,且不能进行后续所有的检验分析,并且经常被滥用。如果进行非学术性研究,只想了解复选项目的频次分布,则可使用复选题;但如果进行学术性研究,则建议尽量不使用复选题,而尽量使用复选题的变形。例如:询问受访者乘坐各家航空公司的乘坐次数、询问每种减肥方式的使用比重、询问对每种兴趣的偏好程度或所花费的时间等,即将原来的命名量表测量变量变为等距或以上的量表。
(二)如何在SPSS中创建复选题
如何在SPSS中输入多项选者题以及如何进行频次和交叉分析,下面将举例说明。例如调查学生的“上网项目“和”嗜好“两组复选题目,其中“上网项目”包括找数据、网站购物、在线游戏、聊天室等;经常从事的“嗜好“包括打球、看电视、打电动、逛街、唱歌等。
复选题在建立数据文件时,必须将每一个选项设为一个变量,而非一组变量成为一个变量,例如:这里上网项目与嗜好各有4个和5个选项,合计9个选项,则需要新建9个变量,如下图所示:
二、定义复选题分析集(Define Sets)
点击Multiple Response选单下的Define sets,将出现Define Multiple Response sets对话框,如下图所示:
(一)复选题分析集名称(Name)
可将复选题分成多重二分集和多类别集合,最多可以定义20个复选题分析集。每个集合必须有一个唯一的名称。每个复选题分析集都必须指定专属的名称,最多可有7个字符。
在上面的例子中,首先在Set Definition框中选择第一个分析集所定义的变量(找数据、网站购物、在线游戏、聊天室)到右边的Variables in Set框中,然后在Name框中,输入分析集名称“上网项目”,并按下add键之后就会在右边的Multiple Response Sets框中出现“$上网项目“,重复此步骤,定义其他分析集。
(二)复选题分析集的数据编码
复选题可编成二分变量或类别变量:
⑴ 二分变量(Dichotomies Counted Values):选取二分法以建立多重二分集,如果在计数值中输入整数值,则计数值至少会出现一次,而计数值中的每个变量都会变成多重二分集中的类别。
⑵ 选取类别(Categories):会建立多类别集合。在多重类别变量集合类别范围的最小值和最大值中,输入整数值。程序会合计范围内所有不同的整数值,空的类别将不会列在表中。例如:受访者的上网项目不会超过三种的话,就可以只要建立三个而非四个变量,且每个变量有四种代码,每个代码代表一种上网项目,如:1、2、3、4分别代表找资料、网站购物、在线游戏、聊天室,则第一个观测值“陈一”的三种上网代码分别是134.
通常这2种方式所得到的结果是相同的,但建议采用二分变量,因为用0和1较易输入,且每个二分变量皆可当命名量表,可分别针对每个复选题变量进行后续的独立样本T检验与卡方检验。
三、复选题分析频次分不表(Frequencies)
“复选题分析频次分析表”程序可以产生复选题分析集的频次分布表。由Multiple ResponseàFrequencies,可打开Multiple Response Frequencies对话框,如下图所示:
对于多重二分集而言,SPSS会用分析集的变量标记当做输出中的类别名称。如果没有定义分析集变量标记的话,变量名称会当作标记使用。其对应的命令语句如下:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
$嗜好 (打球 逛街打电动 看电视 唱歌 (1))
/FREQUENCIES=$上网项目 $嗜好 .
四、复选题分析交叉表(Crosstabs)
“复选题分析交叉表“程序可产生复选题分析集交叉表。由Multiple ResponseàCrosstabs,可打开Multiple Response Crosstabs对话框,如下图所示:
复选题的Crosstabs为一个变量与多个变量的交叉表,例如用性别与上网项目来分析,对应的程序语句为:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
/VARIABLES=性别(0 1)
/TABLES=性别 BY $上网项目
/BASE=CASES .
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10