京公网安备 11010802034615号
经营许可证编号:京B2-20210330
选择复合技能企业目标数据分析是正确的
现代企业们期望大数据能为企业服务,或更甚者期望打造一种数据分析文化。但是总是要在投入资源和金钱之前得到几个关键问题答案:
什么是商业案例分析?
应该使用哪一个大数据的工具?
是否应该聘请一个数据分析供应商来处理一切?
如果我们建立了一个内部团队,我们在哪里能得到的分析人才?
最后一个问题我们哪里能得到数据分析的人才,是源自需要满足不断增长的需求。是为企业和消费者数据继续呈指数级增长的数据科学家的报告(有时是有争议的)提出的不足。但是如果一个企业完全致力于数据分析,它将会寻找或培养人才。
除了人才招募,企业面临根本挑战如何是建立一个有效的数据分析团队,其中最佳组合条件包含了技能,背景和个性。
两名高级数据科学家带领各自的数据科学运用方法与CITEworld讨论有关团队组合的问题。
eXelate数字营销数据管理平台供应商的高级副总裁Kevin Lyons 表示:“第一步是定义明确的业务目标,或者至少有一个公司正在努力,如果你不能定义它,你就没有办法去实现它。”
用服务于Google和Facebook的数据科学家们举例,他们必须提供计算机分析方法,让计算机来晚场关于消费者和可以预测的行为。这些类型的数据科学家通常具有较强的数学和计算技能。
相反的,数据科学家通常需要较强的“软”技能,为人类产品制造提供分析,产品生产提供决策。
Dstillery 是一家市场定位于网页数据分析,以帮助其客户进行广告品牌的定位的公司,公司的首席科学家Claudia Perlich说“你需要至少有一个人可以沟通,这个人可以坐下来好好与首席技术官或首席营销官和首席执行官谈谈业务问题,来帮助数据科学家得出什么样的角色,什么样的特殊任务是他们的工作方向。
数据科学家谁必须具有一项基本的技能是可以互通甚至互动业务部门和行政部门,Perlich强调,他们需要一些基本的技术人才挑起大梁。
她说“他们不需要超强的写代码的能力,但他们需要有获取数据的能力,他们需要会一种脚本语言,比如Perl或Python,是为了让他们一旦发现了数据后及时处理,他们不需要概率论,他们需要对统计的事实和结果完全理解,但是他们需要了解真正的数据含义,而不是一个有误导性行综合数据平均值。
Lyons更进了一步,他说他是一名纯粹的,喜爱数据科学的数据科学家。
他表示如果你未来有拥有一个成功数据科学家团队,你需要有数据科学技能,这意味着你需要有坚实的基础,例如计算机科学与建模的统计专业技能,熟悉程序语言,如Java或C,以及熟悉脚本语言如Python,熟悉Unix和Linux。
Lyons还建议用功能性方法来构建你的数据的团队,下面的表述来自eXelate。
他说:“每一个数据项目由四部分组成,第一是理解业务需求,第二是收集和编排,准备数据,第三个是做数据模型,第四是运行出结果。”
Lyons :“我们这里所有的人,谁能理解企业需求,从而把这种需求去变成计划就代表谁有非常好的商业感觉。 我们与数据管理者谁可以准备数据,无论方式是临时或自动的,我们建模的过程可以数字,也可可视化,最后将代码编入自动化系统。
同样,Perlich说Dstillery团队的成员是涵盖所有有效数据分析所需的工作角色的,其中包含了沟通高手,统计学家,编码专家。
Perlich和Lyons的两个冠军数据科学团队都是多样性的。
Lyons 说:“我尽量让尽可能多层次人才出现在我的团队当中,目前我们已经有Linux管理背景人才,有金融计算管理人才,有地理学背景并且是最好的数据可视化专家人才,有些人来自精算学领域,还有人有数据管理经验和人才培训机构工作经验。“
Perlich :“这里有很多来自不同背景的聪明人,他们的好奇心让他们学到了如何得到要自己想要的数据。”
最后,根据Perlich所表述,企业招聘一个单纯数据科学家是完全不必要的。
她说:“他们并不需要了解你所在的行业中,但如果他们足够聪明,是合格的数据科学家,他们可以了解你在一个月左右的行业。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12