
五个未来最吃香的IT技能 数据分析排第一
在2020年,专业技术知识将不再是IT部门的唯一领域了。整个公司/组织的员工应当要理解如何把IT技术运用到他们的工作之中。但未来学家和IT专家说,最吃香的IT相关技术包括:挖掘海量数据、保护系统免遭安全威胁、管理新系统下日益复杂的风险以及如何利用技术提高生产率。虽然IT知识将更加普及,但雇主们将更加青睐如下5种专用技能。
1.数据分析
据IDC市场研究人员估计,到2020年全球每年产生的数据量将达到35ZB,也就是3500万亿GB。(注:1ZB=1,048,576PB;1PB=1,048,576GB;这个数据很抽象。)IDC的首席研究员JohnGantz说:“用普通的DVD一张一张地摞起来,可以从地球摞两个堆到月球。”
有了这样庞大的数据,这就不仅要求IT从业人员有能力分析海量数据,并且要和业务部门合作,确认哪些数据是可用的,从哪里获取这些有用的数据。
这些混合型的从业人员将同时具备IT专长和业务流程与运作的知识背景。IT人力研究机构FootePartners公司的董事长兼CEODavidFoote说:“他们是那些了解客户需求的,并且知道如何把信息转换为赢利的人。如果你有更多这样的理解整个数据‘供应链’的雇员,你的获利也更多。”
2.风险管理
未来学家DavidPearceSnyder说:“风险管理技能的高需求将会持续到2020年,尤其当(各种)业务和愈发愈发的IT之间关系很紧密。比如,前段时间英国石油在墨西哥湾的油井泄漏中所涉及的IT技术,还有丰田公司处理‘加速门’事件。”(编者注:丰田承认汽车黑匣子阅读器存在软件缺陷。)
Snyder还说:“当我们处于快速创新的时代(这一趋势将持续到2020年),我们会碰到意想不到法律问题;当我们想在这错综复杂的世界搞点创新,很肯能就要碰到这样或那样的问题。”(所以,)企业将寻求具备有风险管理能力的IT从业人员,以预测和应对挑战。
3.机器人技术
据华盛顿的未来咨询学家JosephCoates说,机器人将在2020年之前“接管”更多的工作。所以,具备机器人技术的IT从业人员将不愁没有饭吃。
Coates说:“我们可以把机器人看成类人设备,但我们还需扩大到所有自动化的设备。”机器人技术工作包括:研发、维护和修理。专家将在垂直市场探索相关技术的使用。比如:一些机器人专家可能专注健康护理和研发康复中心的设施,另一些专家肯能为残疾人发明设备或为儿童发明学习工具。
4.信息安全
根据PricewaterhouseCoopers的报告:因为我们上网所花的时间将越来越多,面对面的交互将越来越少,更多的个人信息将在网上曝光,可以轻易冒充他人的新技术也很多,所以在2020年之前,认证用户身份和保护隐私将成重大挑战。远程工作人员也将成为劳动大军的主力,这也就带来更多的信息安全隐患。
编者注:“远程工作人员”也称“居家工作人员”,即那些可以在家通过网络即可上班的人员。
Foote解释说:“我们处于一个危险的环境,虽然很多雇员都精通技术,但他们却并不理解信息安全是最重要的。”Foote预测这个状况将在2020年有改善,因为很多公司将信息安全方面投入更多,包括数据中心、网络连接和远程访问。
5.网络技术
Snyder回应美国劳工统计局的预测说,“网络系统和数据通信管理在2020年仍将是头等大事,但是因为很多公司将想方设法避免增员,所以他们向顾问咨询如何提高产能和效率。”
“如果已经尽量裁员了,那么现在只能提高生产率了。应当有人来告诉我们如何更好地使用现有的网络技术。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07