
五个未来最吃香的IT技能 数据分析排第一
在2020年,专业技术知识将不再是IT部门的唯一领域了。整个公司/组织的员工应当要理解如何把IT技术运用到他们的工作之中。但未来学家和IT专家说,最吃香的IT相关技术包括:挖掘海量数据、保护系统免遭安全威胁、管理新系统下日益复杂的风险以及如何利用技术提高生产率。虽然IT知识将更加普及,但雇主们将更加青睐如下5种专用技能。
1.数据分析
据IDC市场研究人员估计,到2020年全球每年产生的数据量将达到35ZB,也就是3500万亿GB。(注:1ZB=1,048,576PB;1PB=1,048,576GB;这个数据很抽象。)IDC的首席研究员JohnGantz说:“用普通的DVD一张一张地摞起来,可以从地球摞两个堆到月球。”
有了这样庞大的数据,这就不仅要求IT从业人员有能力分析海量数据,并且要和业务部门合作,确认哪些数据是可用的,从哪里获取这些有用的数据。
这些混合型的从业人员将同时具备IT专长和业务流程与运作的知识背景。IT人力研究机构FootePartners公司的董事长兼CEODavidFoote说:“他们是那些了解客户需求的,并且知道如何把信息转换为赢利的人。如果你有更多这样的理解整个数据‘供应链’的雇员,你的获利也更多。”
2.风险管理
未来学家DavidPearceSnyder说:“风险管理技能的高需求将会持续到2020年,尤其当(各种)业务和愈发愈发的IT之间关系很紧密。比如,前段时间英国石油在墨西哥湾的油井泄漏中所涉及的IT技术,还有丰田公司处理‘加速门’事件。”(编者注:丰田承认汽车黑匣子阅读器存在软件缺陷。)
Snyder还说:“当我们处于快速创新的时代(这一趋势将持续到2020年),我们会碰到意想不到法律问题;当我们想在这错综复杂的世界搞点创新,很肯能就要碰到这样或那样的问题。”(所以,)企业将寻求具备有风险管理能力的IT从业人员,以预测和应对挑战。
3.机器人技术
据华盛顿的未来咨询学家JosephCoates说,机器人将在2020年之前“接管”更多的工作。所以,具备机器人技术的IT从业人员将不愁没有饭吃。
Coates说:“我们可以把机器人看成类人设备,但我们还需扩大到所有自动化的设备。”机器人技术工作包括:研发、维护和修理。专家将在垂直市场探索相关技术的使用。比如:一些机器人专家可能专注健康护理和研发康复中心的设施,另一些专家肯能为残疾人发明设备或为儿童发明学习工具。
4.信息安全
根据PricewaterhouseCoopers的报告:因为我们上网所花的时间将越来越多,面对面的交互将越来越少,更多的个人信息将在网上曝光,可以轻易冒充他人的新技术也很多,所以在2020年之前,认证用户身份和保护隐私将成重大挑战。远程工作人员也将成为劳动大军的主力,这也就带来更多的信息安全隐患。
编者注:“远程工作人员”也称“居家工作人员”,即那些可以在家通过网络即可上班的人员。
Foote解释说:“我们处于一个危险的环境,虽然很多雇员都精通技术,但他们却并不理解信息安全是最重要的。”Foote预测这个状况将在2020年有改善,因为很多公司将信息安全方面投入更多,包括数据中心、网络连接和远程访问。
5.网络技术
Snyder回应美国劳工统计局的预测说,“网络系统和数据通信管理在2020年仍将是头等大事,但是因为很多公司将想方设法避免增员,所以他们向顾问咨询如何提高产能和效率。”
“如果已经尽量裁员了,那么现在只能提高生产率了。应当有人来告诉我们如何更好地使用现有的网络技术。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19