京公网安备 11010802034615号
经营许可证编号:京B2-20210330
五个未来最吃香的IT技能 数据分析排第一
在2020年,专业技术知识将不再是IT部门的唯一领域了。整个公司/组织的员工应当要理解如何把IT技术运用到他们的工作之中。但未来学家和IT专家说,最吃香的IT相关技术包括:挖掘海量数据、保护系统免遭安全威胁、管理新系统下日益复杂的风险以及如何利用技术提高生产率。虽然IT知识将更加普及,但雇主们将更加青睐如下5种专用技能。
1.数据分析
据IDC市场研究人员估计,到2020年全球每年产生的数据量将达到35ZB,也就是3500万亿GB。(注:1ZB=1,048,576PB;1PB=1,048,576GB;这个数据很抽象。)IDC的首席研究员JohnGantz说:“用普通的DVD一张一张地摞起来,可以从地球摞两个堆到月球。”
有了这样庞大的数据,这就不仅要求IT从业人员有能力分析海量数据,并且要和业务部门合作,确认哪些数据是可用的,从哪里获取这些有用的数据。
这些混合型的从业人员将同时具备IT专长和业务流程与运作的知识背景。IT人力研究机构FootePartners公司的董事长兼CEODavidFoote说:“他们是那些了解客户需求的,并且知道如何把信息转换为赢利的人。如果你有更多这样的理解整个数据‘供应链’的雇员,你的获利也更多。”
2.风险管理
未来学家DavidPearceSnyder说:“风险管理技能的高需求将会持续到2020年,尤其当(各种)业务和愈发愈发的IT之间关系很紧密。比如,前段时间英国石油在墨西哥湾的油井泄漏中所涉及的IT技术,还有丰田公司处理‘加速门’事件。”(编者注:丰田承认汽车黑匣子阅读器存在软件缺陷。)
Snyder还说:“当我们处于快速创新的时代(这一趋势将持续到2020年),我们会碰到意想不到法律问题;当我们想在这错综复杂的世界搞点创新,很肯能就要碰到这样或那样的问题。”(所以,)企业将寻求具备有风险管理能力的IT从业人员,以预测和应对挑战。
3.机器人技术
据华盛顿的未来咨询学家JosephCoates说,机器人将在2020年之前“接管”更多的工作。所以,具备机器人技术的IT从业人员将不愁没有饭吃。
Coates说:“我们可以把机器人看成类人设备,但我们还需扩大到所有自动化的设备。”机器人技术工作包括:研发、维护和修理。专家将在垂直市场探索相关技术的使用。比如:一些机器人专家可能专注健康护理和研发康复中心的设施,另一些专家肯能为残疾人发明设备或为儿童发明学习工具。
4.信息安全
根据PricewaterhouseCoopers的报告:因为我们上网所花的时间将越来越多,面对面的交互将越来越少,更多的个人信息将在网上曝光,可以轻易冒充他人的新技术也很多,所以在2020年之前,认证用户身份和保护隐私将成重大挑战。远程工作人员也将成为劳动大军的主力,这也就带来更多的信息安全隐患。
编者注:“远程工作人员”也称“居家工作人员”,即那些可以在家通过网络即可上班的人员。
Foote解释说:“我们处于一个危险的环境,虽然很多雇员都精通技术,但他们却并不理解信息安全是最重要的。”Foote预测这个状况将在2020年有改善,因为很多公司将信息安全方面投入更多,包括数据中心、网络连接和远程访问。
5.网络技术
Snyder回应美国劳工统计局的预测说,“网络系统和数据通信管理在2020年仍将是头等大事,但是因为很多公司将想方设法避免增员,所以他们向顾问咨询如何提高产能和效率。”
“如果已经尽量裁员了,那么现在只能提高生产率了。应当有人来告诉我们如何更好地使用现有的网络技术。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07