京公网安备 11010802034615号
经营许可证编号:京B2-20210330
懂你的推荐算法,推荐逻辑是怎样的?
作为一个喜欢思考人生的美男子,我时常感慨,现在这个年代,人们上网获取信息的成本真的好低。智能手机,人手一台,打开3G就能上网,百度一搜,什 么都有。当然百度上搜出来的大多数可能并不是你想要的,但这并不妨碍上面的论点成立。也正是因为成本太低,人们反而不愿意主动取获取信息,于是各种各样的 推荐系统有了大展身手的机会。
推荐在生活中是一个再平常不过的事情,你失业了,有人会给你推荐工作,你失恋了,有人会给你推荐姑娘。但是在我们这个机器远没有人类聪明的时代,这 些事情要是交给机器去做,你就得设计出一套机器能理解的算法出来,这就是所谓的推荐算法。大家看到算法两个字不要慌,以为我又要搬一个大东西出来吓唬人。 你可以把算法看做现实生活中的办事流程,它规定了你第一步干什么,第二步干什么,只要你按它说的做,就可以把事情办好。举个例子,你现在要做一个电影推荐 APP,我们来看下整个过程是怎样的。
在推荐算法中,我们第一步要有一大堆要推荐的东西。也就是说,你的电影首先要足够多,才能满足不同用户的需求。算法再精准,最后发现推导出来的结 果,在你的数据库中并没有,就悲剧了。第二步是要有用户的行为数据。这个也是越多越详细越好。这时候你要把看了哪部电影,看完没有,评价怎么样悄悄的记下 来,上传到后台服务器。经过长期的积累,这些数据将为你以后的精准推荐奠定基础。
有了上面的数据基础,我们就可以进入正题了。推荐算法有不少,我们今天介绍一种最基本的叫做协同过滤算法。它的核心思想是物以类聚,人以群分。具体 可以分为基于用户的协同过滤算法和基于物品的协同过滤算法。我一直觉得专业领域起这种高大上的名字,是用来过滤智商的,因为很多人看到这里就不打算往下看 了,哈哈。
先看第一种基于用户的协同过滤。可以简单理解为我虽然不认识你,但是我通过查看你的朋友圈都是些什么人,根据人以群分的道理,他们喜欢的很可能就是你喜欢的。
假设从历史数据上来看,用户A喜欢《捉妖记》、《大圣归来》,用户B喜欢《栀子花开》、《小时代》,用户C喜欢《捉妖记》。那我们就可以简单认为 AC二人口味相似,可以归到一个朋友圈里,C极有可能也喜欢A所喜欢的《大圣归来》。这是最简单的情况,实际上仅仅用喜不喜欢来评价感兴趣程度是远远不够 的,用户不可能看完还填个调查表选择yes or no,但是会通过一些其他行为比如影评、是否收藏来反应他们的喜欢程度。机器只能理解量化的东西,所以在算法中,这些行为会转化成相应的分数。比如完整看 完的,给3分;看完还给了正面评价的,给5分;看到一半就怒删的,给负10分。这样每个用户都会有一个电影评分表,在计算两个用户相似度的时候,把这些数 据代入下面这种专门计算相似度的公式,就能得到二人口味的相似程度。
现在我们要给用户D推荐电影,分别计算AD、BD、CD的相似度,找到跟D最相似的用户,然后把他喜欢的,都推荐给D,就行了。(下面的公式叫做余弦相似度公式,通过计算n维空间中两个向量的夹角余弦,来表示相似度,大家感受一下就好,感兴趣的可以去问google。)
第二种是基于物品的协同过滤。基本思想是假设甲乙是相似的物品,那么喜欢甲的人,很可能也喜欢乙。还是上面的例子,现在假设用户E喜欢《栀子花开》 和《小时代》,那我们可以推导出,喜欢《栀子花开》的用户(B和E)都喜欢《小时代》,那基本可以确定两部电影是相似的,下回来个用户F,他喜欢《栀子花 开》,那我顺便就把《小时代》推荐给他,他可能比较容易接受。
大家可能要问,我的APP第一天上线,没有这些所谓的用户行为数据怎么推荐啊。这就是推荐算法面临的冷启动问题。这时候可以用基于内容的算法了。你 可以事先把所有电影归个类,战争片归到一起,喜剧片归到一起,动画片归到一起。用户H看了一部喜剧片,你就把所有喜剧片推荐给他。显而易见,这种算法简单 粗暴,当然命中率也最低。
真正的推荐系统会综合运用各种算法,加之机器学习和人工调优的不断改进,所以是非常复杂的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29