
史上最实用的大数据实施系统计划
大数据——这个词看起来比较深奥,一般非专业人士听着觉得相对复杂,觉得可能需要很大成本来部署和实施。然而幸运地是市面上已经有一些云服务来帮助我们让大数据变得更简单。另外,如果你选择合适的工具,也往往会使你的大数据之路起到事半功倍的效果。
因此在实际应用上,大数据的实际实施系统可以有很多种方式。通过你的预算和思考规划,你将能使用最便捷、最实用、又最低成本的大数据实施系统。
在选择据具体大数据工具之前,你最好回答三个问题:
1. 你的数据有多大?
2. 你希望你的数据查询要多快?
3. 你想要怎样展现数据?
第一个问题决定你需要什么样的大数据存储系统,第二个问题决定你需要什么样的查询或者执行引擎。第三个问题决定了你需要怎样功能的相关数据可视化工具。第三个问题相对简单,市面上的数据可视化工具特色明显:大数据魔镜可视化效果达500种以上,展现效果绚丽,适合需要多种展现方式的数据;Tableau可视化效果少,但数据展示功能依然很强,能够直观展示普通可视化需求的数据。
下面是基于对前两个问题的不同回答,推荐采用的一些工具。
1. 超大数据(几百TB),查询时间容忍度很高(几小时)
这个是批处理(batch processing)适用的场景。一个可行的方案是:AWS S3 + Apache Spark。你可以执行Spark任务,读取S3中的数据,然后将计算结果存成CSV文件,最后用Excel分析或者可视化结果。
2. 中等规模数据(几十TB),希望查询快速响应(几秒钟)
这个通常是交互式查询适用的场景。一个可行的方案是:AWS Redshift + Tableau。 Redshift提供低延迟查询处理,Tableau提供很好的数据可视化功能,二者结合起来可以轻松的分析大量数据,只是需要一定的成本。需要提醒的是,你最好提前规划好 Redshift集群的规模和容量,减少随机动态调整, 因为在Redshift中,扩展集群(scale up or scale out)是个比较痛苦的过程。
3. 中等规模数据(几十TB),一定的查询响应容忍度(几分钟),低成本
这个场景适用于预算有限的情况,或者你不想在AWS Redshift和Tableau上投入太多。你将需要对大数据比较了解的开发人员,从而可以自己搭建企业内部的大数据集群。一个可行的解决方案是:Apache Cassandra + Presto Query Engine + H2 Console (from H2 Database Engine)。
Cassandra提供高可靠性大数据存储系统,并且比较容易部署。Presto提供分布式SQL执行引擎,可以运行在Cassandra之上,并提供 JDBC支持。H2 Console是一个简单但是有效的Web界面,用来查询JDBC数据源。利用这些工具组合,你不需要任何编程工作,就可以在企业内部搭建起一个端到端大数据解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07