京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不解决这六个问题,农商行应用大数据就是扯
中国人民银行参事、国家信息化专家咨询委员会委员陈静曾指出:没有信息化,就没有金融的现代化。进入信息化时代以来,银行的生存环境发生了巨大的变化,信息化建设和大数据的应用,已经成为银行业竞争的一个筹码,也是获得竞争优势的一个方法。
大数据在帆软传说哥看来,有两个含义,一是大量的数据,二是能产生价值的数据。对银行来说,数据量从来都不缺,缺少的是能让产生价值的数据。传说哥曾在《大数据时代下,百货行业如何革命?》一文中讨论过数据的应用方向,一是围绕业务、用户的数据应用,另一个是围绕企业自身管理、运营的数据应用。对于银行业来讲数据的应用方向也是如此。老祖宗教育我们,打铁还需自身硬,所以提取能产生价值的数据用于优化企业运营,是大数据时信息化建设的关键一步,也是当前银行业正在走的一步。
银行业按照形态,分为农村商业银行和城市商业银行两类。这次先随传说哥一起探讨农商行信息化的现状和问题。
农村商业银行与城市农村商业银行的信息化建设不同,城市商业银行是经过分散的小系统整合成统一联网系统,再逐渐演化丰富,进而形成一套信息化基础平台,是一个大一统平台。而农村商业银行是逐渐从信用联社的网络中剥离,全国两千多家农商行,其信息化之路也是相对分散和独立的,信息化水平尤其是数据应用水平较城市商业银行落后许多。
帆软公司银行业信息化顾问杨扬在其论文《农商行统一数据分析平台建设方案》中把农商行信息化水平由低至高分为4大类型,大致为:
1、农商行没有数据中心,没有报表系统,报表在各个系统呈现,其余都是Excel文件,日常管理麻烦、响应低效,业务人员经常不知道去哪边找数据,数据的利用效率最低;
2、农商行有报表系统,但是响应缓慢,导致报表系统价值削弱,业务人员继续找技术人员索要数据,形成大量Excel文件,无法进行有效分析汇总;
3、农商行有报表系统,维护也及时,不过技术人员疲于应对日常取数报表需求,业务人员分析意识薄弱,导致为了看报表而做报表;
4、农商行的业务人员可以自主取数进行各种数据、报表分析,技术人员提供自主取数平台,同时协助业务部门落实数据挖掘,结合移动端呈现,达到数据价值呈现的目的。
很不幸的是大多数农商行都停留在第二类别以前,少数处在第三类别。这三个类别信息化程度虽然不同,但总结起来,无非就是系统多的问题、需求变更的响应问题、口径不统一的问题、数据展示分析效率的问题、无法移动办公的问题和科技部人事动力的问题,具体如下:
1:系统多。农商行的薪酬、小额贷等自建系统比较多,各个系统报表通过代码实现,样式杂乱,交接麻烦,对于前端决策和业务部门需求,无法提供有力支撑;
2:需求变更多。业务部门为了运营和管理需要,经常新增报表,也会依据领导关注的领域进行分析调整,以及省ODS口径调整也会带来报表重新设计等;
3:口径不一致。省统计口径和市、县不一致,市县需要重新加工;
4:取数效率慢。业务人员取数需要技术人员提供,严重影响双方效率;
5:无法做到移动办公。领导出差无法实时查看到行内核心KPI指标,缺乏移动数据呈现;
6:科技部价值无法体现:大部分系统都是软件商开发,科技部只是维护工作,体现不出自己的价值;
可以看到,这六大问题,基本上掐死了农商行应用大数据的命脉:数据没办法应用或者很难去用,组织和实现数据应用的部门无动力和价值感。如此的情况,怎么可能去玩好大数据呢?
新时代的到来,总会造就一批弄潮儿,也会抛弃一批吊车尾。要想实现在大数据时代弯道超车,就要让数据为运营服务,为企业利润服务,为企业战略服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27