
分类模型是数据挖掘中应用非常广泛的算法之一,常用的分类算法有Logistic模型、决策树、随机森林、神经网络、Boosting等。针对同一个数据集,可以有这么多的算法进行分析,那如何评估什么样的模型比较合理呢?本文就讲讲常用的模型验证武器,主要包括混淆矩阵、ROC曲线、提升度、增益法和KS统计量。
一、混淆矩阵
混淆矩阵就是如下图所示的那样,也是最简单的一种模型验证方法:
通过混淆矩阵可以算出模型预测精度((a+d)/(a+b+c+d))、正例覆盖率(b/(c+d))、负例覆盖率(a/(a+b))等。通过这么些指标综合考虑模型的预测准确率。
二、ROC曲线
在讲解ROC曲线之前,我们先看看几个定义:
Sensitivity:正确预测到的正例数/实际正例总数,即b/(c+d)
Specificity:正确预测到的负例数/实际负例总数,即a/(a+b)
ROC曲线就是根据这两个指标值绘制出来的,其中x轴为1-Specificity,y轴为Sensitivity。
通过比较ROC曲线与45°直线可以直观的反映模型的好坏,但并不能从定量的角度反馈模型好是好到什么程度或模型差是差到什么程度。那么就引申出了AUC的概念,即ROC曲线下的面积。当曲线偏离45°直线越远,则AUC越大,模型相应就会越好。一般认为AUC在0.75以上,模型就可以接受了。
三、提升度Lift
在讲解提升度曲线之前,我们先看看几个定义:
Pi:测试集中正例的比例,即(c+d)/(a+b+c+d)
Ptp:正确预测到的正例个数占总观测值的比例,即d/a+b+c+d=Pi1* Sensitivity
Pfp:把负例错误地预测成正例的个数占总数的比例,即b/a+b+c+d=(1-Pi1)*(1- Specificity)
Depth:预测成正例的比例,即b+d/a+b+c+d=Ptp+Pfp
PV_Plus:正确预测到的正例数/预测正例总数,即d/(b+d)=Ptp/depth
提升度Lift=(d/b+d)/(c+d/a+b+c+d)=PV_plus/Pi1
Lift曲线就是根据Depth和Lift两个指标绘制而成,它反映了预测正例的正真准确率。
四、增益法Gain
其实增益法Gain与提升度是一个事物的两种说法,从公式中就可以看出:
Gain=d/(b+d)=PV_plus
Gain与提升度相比并没有除以Pi值。
五、K-S统计量
统计学中,对于单样本的K-S检验就是利用样本数据来推断其是否服从某种分布,对于两样本的K-S检验主要推测的是两个样本是否具有相同的分布,对于模型的评估,希望正例的累积概率分布与负例的累积概率分布存在显著差异。
所以我们使用K-S统计量刻画模型的优劣,即使正例与负例的累积概率差达到最大。这是一个定量的判断规则,如下图所示,为传统的评价准则
:
通常要求模型KS值在0.4以上。
废话不多说,下面我们看看如何使用R语言实现这些评估模型的方法。
实例操作:
```{r}
#读取数据
dmagecr <- read.table(file = file.choose(), head = TRUE, sep = '')
#数据结构
str(dmagecr)
```
其中,二分变量good_bad为目标变量,Logistic模型默认将good水平作为感兴趣的水平,很显然对于客户是否为优质客户的问题,这里选择good作为关注对象是错误的,下面指定bad水平为兴趣水平。
```{r}
#指定感兴趣的水平为bad
dmagecr$good_bad <- factor(dmagecr$good_bad, levels = c('good','bad'),ordered = TRUE)
#创建训练集和测试集
set.seed(1234)
index <- sample(c(1,2), size = nrow(dmagecr), replace = TRUE, prob = c(0.7,0.3))
train <- dmagecr[index == 1,]
test <- dmagecr[index == 2,]
#构建Logistic模型
model <- glm(formula = good_bad ~ checking+history+duration+savings+property, family = binomial(link = "logit"), data = train)
#模型结果查看
summary(model)
```
从上图的结果可知,模型的预测变量均为显著,即认为这些变量是模型的重要变量。光有模型的预测变量显著还不够,还需要检测模型是否显著:
```{r}
#模型的显著性检验
anova(object = model, test = 'Chisq')
```
从第一个变量到最后一个变量,逐步加入模型后,模型的偏差检验均为显著,即认为整个模型是通过检验的。下面我们再看看模型的拟合优度如何,即模型的预测与实际情况是否吻合或相近,这里使用H-L检验:
```{r}
#模型的拟合优度检验--HL检验
library(sjmisc)
HL_test <- hoslem_gof(x = model)
HL_test
```
H-L的P值显著大于0.05,即接受实际值与预测值相吻合的原假设,再次说明模型是比较理想的。接下来我们就用这个训练集得到的模型来预测测试集:
```{r}
#模型预测
probility <- predict(object = model, newdata = test[,-21], type = 'response')
predict <- ifelse(probility > 0.5, 'bad', 'good')
#转型为因子
predict <- factor(predict, levels = c('good','bad'), order = TRUE)
#模型评估混淆矩阵
Freq <- table(test[,21], predict)
#预测精度
Accuracy <- sum(diag(Freq))/sum(Freq)
Freq;Accuracy
```
从模型的预测精度来看,准确率为74.2%,模型预测并不理想。除了使用混淆矩阵来评估模型,还可以使用ROC曲线下的面积AUC、提升度Lift、增益法Gain和K-S统计量。下面就深入介绍这几种方法:
```{r}
#ROC曲线
library(pROC)
roc_curve <- roc(test[,21],probility)
names(roc_curve)
Specificity <- roc_curve$specificities
Sensitivity <- roc_curve$sensitivities
library(ggplot2)
p <- ggplot(data = NULL, mapping = aes(x= 1-Specificity, y = Sensitivity))
p + geom_line(colour = 'red') +geom_abline(intercept = 0, slope = 1)+ annotate('text', x = 0.4, y = 0.5, label=paste('AUC=',round(roc_curve$auc,2)))+ labs(x = '1-Specificity',y = 'Sensitivity', title = 'ROC Curve')
```
结果显示,AUC为0.79,相比于0.75,模型马马虎虎还能说的过去。
```{r}
#Lift曲线
Pi <- table(test$good_bad)[2]/sum(table(test$good_bad))
Ptp <- Pi*Sensitivity
Pfp <- (1-Pi)*(1-Specificity)
Depth <- Ptp + Pfp
PV_Plus <- Ptp/Depth
Lift <- PV_Plus/Pi
p <- ggplot(data = NULL, mapping = aes(x= Depth, y = Lift))
p + geom_line(colour = 'blue') + labs(x = 'Depth',y = 'Lift', title = 'Lift Curve')
```
提升度一般是这样使用的:如果某项营销活动受成本的限制,又想使营销活动取得非常成功,一般通过Lift曲线进行人员的筛选,即给定某个Lift阈值,反过来确定Depth值。如提升度相比于不作任何模型,使其达到2倍以上的响应,需要设置Depth在前25%以内。同样,我们还可以绘制Gain曲线:
```{r}
#Gain曲线
p <- ggplot(data = NULL, mapping = aes(x= Depth, y = PV_Plus))
p + geom_line(colour = 'blue') + labs(x = 'Depth',y = 'PV_Plus', title = 'Gain Curve')
```
实际上,Lift曲线与Gain曲线长的一模一样,只不过是纵坐标不同而已。
胡江堂的基于SAS模型评估系列文章中没有涉及到K-S统计量的讲解,本文就对其作一个拓展,R中还没有找到直接绘制两个连续变量的K-S曲线统计量函数,故这里自定义绘制曲线所需数据的函数:
```{r}
#准备K-S数据
ks_data <- as.data.frame(cbind(good_bad=test[,21], probility))
good_ks <- ks_data[which(ks_data$good_bad==1),'probility']
bad_ks <- ks_data[which(ks_data$good_bad==2),'probility']
#自定义计算累计分布函数值
KS_Data <- function(x, y){
gaps_x <- seq(min(x), max(x), length=1000)
cauculate_x <- numeric()
for(i in 1:length(gaps_x)){
cauculate_x[i] <- sum(x<=gaps_x[i])/length(x)
}
gaps_x <- sort((gaps_x-min(gaps_x))/(max(gaps_x)-min(gaps_x)))
gaps_y <- seq(min(y), max(y), length=1000)
cauculate_y <- numeric()
for(i in 1:length(gaps_y)){
cauculate_y[i] <- sum(y<=gaps_y[i])/length(y)
}
gaps_y <- sort((gaps_y-min(gaps_y))/(max(gaps_y)-min(gaps_y)))
return(list(df = data.frame(rbind(data.frame(Gaps = gaps_x,Cauculate = cauculate_x,Type = 'Positive'),data.frame(Gaps = gaps_y,Cauculate = cauculate_y,Type = 'Negtive'))), KS = max(abs(cauculate_y-cauculate_x)), x = gaps_y[which.max(abs(cauculate_y-cauculate_x))],y = abs(cauculate_x[which.max(abs(cauculate_y-cauculate_x))]-cauculate_y[which.max(abs(cauculate_y+cauculate_x))])/2))
}
#绘制K-S曲线
ggplot(data = KS_Data(bad_ks,good_ks)$df, mapping = aes(x = Gaps, y = Cauculate, colour = Type)) + geom_line() + theme(legend.position='none') + annotate(geom = 'text', x = KS_Data(bad_ks,good_ks)$x, y = KS_Data(bad_ks,good_ks)$y, label = paste('K-S Value: ', round(KS_Data(bad_ks,good_ks)$KS,2))) + labs(x = 'Probility', y = 'CDF')
上图结果显示,K-S统计量的值为0.43,根据传统的评价准则,也说明该模型还是基本行得通的。
在数据挖掘实际过程中,需要横向的比较多个模型评估结果,还需要纵向的比较同一个模型不同参数调整的评估结果。通过上面所说的这些评估方法,终能够选出一个最理想的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02