
大数据时代:数据和算法,谁更重要?
我知道很多人自始至终都认为数据是越多越好,即大数据越大越好,Google甚至直言:更多的数据胜过更好的算法,而过去很多侦探剧中崇尚“信息越多,就越靠近真相”的刑侦金句也似乎佐证这一点。
而事实上,我的观点是,数据只是基础,如何建构起有效的算法、模型比数据本身更重要,最起码对目前而言是这样的。持与我相近观点的大有人在,如《The Signal and the Noise》(信号与噪声,作者Nate Silver)这本书里面的一个观点是“更多的数据意味着更多的噪声。信号是真相,噪声却使我们离真相越来越远。”
每种观点都有自己的理据,所以我们不能片面地去判断说哪种观点对与错。就大数据这个事情而言,我认为Google是一个理想主义者,而Nate Silver则是一个实用现实主义者。
理想中的大数据的终极形态是不用构建模型,或者说已经构建了全模型,不用针对每次分析的目的去单独建模,数据自身会从数据特性,规律去进行逻辑性分析(非数理分析),人们只需要将所有数据输入,机器就能告诉人们这些数据中,哪些数据说明了什么问题,大数据的输出成果将不是一份报告,而是一个体系,没有一份报告能容纳如此多的结果。到了那个时候,确实是更多的数据胜过更好的算法,因为那时候已经没有了算法,没有什么是不能计算的。
但现实是,我们目前的大数据离理想中的大数据形态还有很远的距离。
我们先看一个通过数据分析来辅助营销的例子。你要推广一个旅游产品,比如说是一个旅游攻略的APP,你第一反应肯定是去旅行社、户外网站去收集数据,去展开宣传,去铺开销售吧?这当然对,但问题是,经常旅游的人很可能已经不需要你旅游产品的指导,他们有更多的出游经验,他们有更多的团队合作,他们可能更倾向个体出行。而不经常出没在户外网站的人,不经常搜索旅游相关信息的人,他们心中对旅行的渴望也许是很强烈的。从数据的维度来看,从旅行社、户外网站收集到的客户信息当然是比大众市场上得到的客户信息的维度要多,颗粒度要细,信息更非结构化,更称得上“大数据”,但显然,通过这些更大的数据却未必能支撑你找到更多有需求的客户。当然,你也许会说在强关联的小圈子里找到客户的单位成本远比漫无边界地挖掘客户的单位成本要低。但我只是用这个例子去说明,更多的信息未必能指向更明确结果,如何建构一个合理的模型(利用有限的数据去做最有效的分析),远比找到一个新的数据源要重要得多。
目前的大数据与理想中的大数据形态的距离并不在于数据源的多少上,数据源从来不是问题,问题是在于我们如何去建构一个科学合理的分析模型,并相信、坚持分析模式的输出结果。通过不断地修正、累积各种正确的分析模型,我们将不断接近理想形态。
而很不幸的是,有时候现实与之背道而驰。
分析员总是习惯带着预设去分析,他们会自觉不自觉地以对自己有利的方式对这些数据进行分析和解释,而哪怕这些方式很可能与这些数据所代表的客观现实不相吻合。出于各种原因,分析员很难从干扰他们的噪声中分辨出有用的信号,甚至会无视这些真实有用的信号。于是,数据展示给他们的通常都是他们想要的结果,而且他们通常也能确保这些数据令大家皆大欢喜。同时,我们天真的相信各种预测分析模型,却没有人认真地去验证这些模型是否科学合理,是否与事实相符,也许这些模型在进行架设选择时根本不堪一击。
我对此感同身受。我曾经为不同省份的移动公司做过各种形式的经分,给我最大的感受就是,我们不是要用数据去发现问题,找到解决问题的方法,而是我们要用数据去支持领导的观点,一旦结果与领导观点相悖时,模型是可以调整,数据可以调整,口径可以调整,只有领导的观点不能动,不能变。具体的过程是,刚开始时我们通过经验建构了分析模型,模型只需要三组数据,但很不幸无法支撑领导的观点,进而增加到五组,依然无法得出想要的结论,进而想方设法增加到十组,并开始调用不同的分析模型,费尽九牛二虎之力,终于在用某模式导入XXYY数据时,出来的结果刚好与领导的观点一致,好吧,终于天亮了,终于可以定稿了,终于可以各自回家睡觉了。一觉醒来后开始宣扬,我们充分调用了N多的数据,并创新性地使用了X模型,得出某某结论,与领导观点不谋而合。
这就是分析员的困境,而这种困境是目前分析工作的常态,也许压力不是来自于领导,但也有可能来自于市场的压力,个人绩效的压力,时间精力的有限,经验和知识的匮乏,甚至是内心无法言明的情绪等。
这个世界自从有了印刷机,信息的传递不再局限,信息变得不再那么稀有,后来有了互联网,信息开始爆炸式增长,我们拥有的信息太多,甚至多到无从下手,但事实上是有用的信息寥寥无几。没有科学、经过验证的模型支持,我们往往主观地、有选择的看待信息,对信息的曲解却关注不够,于是,当我们把越来越多的信息塞进越来越臃肿的模型,我们以为我们将看到更多真相,而事实是很多只是假相。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13