
大数据时代:数据和算法,谁更重要?
我知道很多人自始至终都认为数据是越多越好,即大数据越大越好,Google甚至直言:更多的数据胜过更好的算法,而过去很多侦探剧中崇尚“信息越多,就越靠近真相”的刑侦金句也似乎佐证这一点。
而事实上,我的观点是,数据只是基础,如何建构起有效的算法、模型比数据本身更重要,最起码对目前而言是这样的。持与我相近观点的大有人在,如《The Signal and the Noise》(信号与噪声,作者Nate Silver)这本书里面的一个观点是“更多的数据意味着更多的噪声。信号是真相,噪声却使我们离真相越来越远。”
每种观点都有自己的理据,所以我们不能片面地去判断说哪种观点对与错。就大数据这个事情而言,我认为Google是一个理想主义者,而Nate Silver则是一个实用现实主义者。
理想中的大数据的终极形态是不用构建模型,或者说已经构建了全模型,不用针对每次分析的目的去单独建模,数据自身会从数据特性,规律去进行逻辑性分析(非数理分析),人们只需要将所有数据输入,机器就能告诉人们这些数据中,哪些数据说明了什么问题,大数据的输出成果将不是一份报告,而是一个体系,没有一份报告能容纳如此多的结果。到了那个时候,确实是更多的数据胜过更好的算法,因为那时候已经没有了算法,没有什么是不能计算的。
但现实是,我们目前的大数据离理想中的大数据形态还有很远的距离。
我们先看一个通过数据分析来辅助营销的例子。你要推广一个旅游产品,比如说是一个旅游攻略的APP,你第一反应肯定是去旅行社、户外网站去收集数据,去展开宣传,去铺开销售吧?这当然对,但问题是,经常旅游的人很可能已经不需要你旅游产品的指导,他们有更多的出游经验,他们有更多的团队合作,他们可能更倾向个体出行。而不经常出没在户外网站的人,不经常搜索旅游相关信息的人,他们心中对旅行的渴望也许是很强烈的。从数据的维度来看,从旅行社、户外网站收集到的客户信息当然是比大众市场上得到的客户信息的维度要多,颗粒度要细,信息更非结构化,更称得上“大数据”,但显然,通过这些更大的数据却未必能支撑你找到更多有需求的客户。当然,你也许会说在强关联的小圈子里找到客户的单位成本远比漫无边界地挖掘客户的单位成本要低。但我只是用这个例子去说明,更多的信息未必能指向更明确结果,如何建构一个合理的模型(利用有限的数据去做最有效的分析),远比找到一个新的数据源要重要得多。
目前的大数据与理想中的大数据形态的距离并不在于数据源的多少上,数据源从来不是问题,问题是在于我们如何去建构一个科学合理的分析模型,并相信、坚持分析模式的输出结果。通过不断地修正、累积各种正确的分析模型,我们将不断接近理想形态。
而很不幸的是,有时候现实与之背道而驰。
分析员总是习惯带着预设去分析,他们会自觉不自觉地以对自己有利的方式对这些数据进行分析和解释,而哪怕这些方式很可能与这些数据所代表的客观现实不相吻合。出于各种原因,分析员很难从干扰他们的噪声中分辨出有用的信号,甚至会无视这些真实有用的信号。于是,数据展示给他们的通常都是他们想要的结果,而且他们通常也能确保这些数据令大家皆大欢喜。同时,我们天真的相信各种预测分析模型,却没有人认真地去验证这些模型是否科学合理,是否与事实相符,也许这些模型在进行架设选择时根本不堪一击。
我对此感同身受。我曾经为不同省份的移动公司做过各种形式的经分,给我最大的感受就是,我们不是要用数据去发现问题,找到解决问题的方法,而是我们要用数据去支持领导的观点,一旦结果与领导观点相悖时,模型是可以调整,数据可以调整,口径可以调整,只有领导的观点不能动,不能变。具体的过程是,刚开始时我们通过经验建构了分析模型,模型只需要三组数据,但很不幸无法支撑领导的观点,进而增加到五组,依然无法得出想要的结论,进而想方设法增加到十组,并开始调用不同的分析模型,费尽九牛二虎之力,终于在用某模式导入XXYY数据时,出来的结果刚好与领导的观点一致,好吧,终于天亮了,终于可以定稿了,终于可以各自回家睡觉了。一觉醒来后开始宣扬,我们充分调用了N多的数据,并创新性地使用了X模型,得出某某结论,与领导观点不谋而合。
这就是分析员的困境,而这种困境是目前分析工作的常态,也许压力不是来自于领导,但也有可能来自于市场的压力,个人绩效的压力,时间精力的有限,经验和知识的匮乏,甚至是内心无法言明的情绪等。
这个世界自从有了印刷机,信息的传递不再局限,信息变得不再那么稀有,后来有了互联网,信息开始爆炸式增长,我们拥有的信息太多,甚至多到无从下手,但事实上是有用的信息寥寥无几。没有科学、经过验证的模型支持,我们往往主观地、有选择的看待信息,对信息的曲解却关注不够,于是,当我们把越来越多的信息塞进越来越臃肿的模型,我们以为我们将看到更多真相,而事实是很多只是假相。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09