京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“物联网”巧用大数据
物联网究竟是什么?就其本质而言,物联网是一个广泛的生态系统,涵盖连接到互联网的众多普通物品,这些物品能够自报身份,并将数据传送给同一网络上的其他物品。
物联网的基本架构包括一项跟踪技术,比如RFID或条形码、传感器、嵌入式软件和无线互联网连接。“应答器节点”贴在卡车和药瓶等物品上,以独特的方式向互联网自报身份。通过把几乎各种类型的产品或设备(车辆、施工设备、煤气表及电表、家用电器和自动售货机等)接入Web,物联网就可以允许捕获关于这些物品的信息,因而形成了一个“智能物品”网络,这些智能物品可以积极参与到各种业务流程中。
无处不在的网络连接、低成本传感器,以及让几乎任何东西都可以连接到互联网的微电子学技术,它们共同推动物联网革命向前发展。业内曾经肤浅地认为物联网不会成功。可现在的案例表明,物联网大有希望改变商业,而早期涉足该领域的企业似乎找到了方向。
但如果企业正在研究物联网的商业战略,那就要小心了:前方面临许多技术和管理上的挑战。本文介绍了物联网方面的机会、障碍以及所需的新技能——想充分利用海量数据,势必需要新技能。
商机多多
物联网有望让物品之间互联互通,并收集大量数据,这势必给企业带来显著的经济效益,有些企业已准备最大限度地利用来自联网物理系统的源源不断的实时数据。对它们而言,物联网带来了实打实的好处。
技术咨询公司Mindtree的首席研究员Ronak Sutaria说:“物联网技术允许实时而准确的数据感知,并以无线方式将这些数据传送给连接到互联网的Web应用程序和服务器。这使得我们可以更精确、更准确地监控物理系统。”
Sutaria表示,物联网相关技术已经应用于众多行业。比如说,农业公司在实时监测农作物,以提高农产品质量,并节约耕种所需的资源,包括农药、化肥和水。公用事业公司已部署了智能仪表,监测能源、煤气和水的消耗量。许多市政部门则启动了“智慧城市”项目,帮助缓解交通拥堵、改善废物管理、监测来自手机信号塔的能量辐射以及控制路灯。
一些较为成功的、有借鉴意义的项目来自医疗保健行业。大河医疗中心(Great River Medical Center)是一家医疗机构,它使用微软的Windows Embedded(为用于嵌入式系统而设计的一款操作系统),把其许多医疗设备连接成了一个网络。
大河医疗中心的医药服务主任Darwin Cooley表示,“这个部署项目覆盖了我们的整个医药管理运营,从手术室监控受管制药品的麻醉药工作站,到护士站跟踪和分配药物的自动安全柜,再到药房记录药物量的库存管理旋转式传送带(需要补给药品时,会自动添购)。”这些设备统统连接到一台运行Windows Server以及SQL Server数据库的中央服务器。
Cooley表示,每种药物都编有条形码,采用单剂包装,那样这家医疗中心就能跟踪和控制整个环节的每一步。
“我们的行政管理部门和董事会提出的一大要求就是,提高成本效益。而自动配药不仅提高了效率,还大大降低了人力成本。” Cooley说倒。
该技术让大河医疗中心把药物送到病人手里的时间缩短了67%,由原来平均90分钟缩短至30分钟。此外,这项技术还让药房每年减少了30万美元的费用,并一次性省下了40万美元的库存费用。
将正确的药物更迅速地发给病人,这不仅改善了病人治疗效果,还降低了重新收治率。
困难重重
“要是不克服重重障碍,企业别指望得益于物联网。对于要接入网络的每一个物体,至少需要清点、贴条形码以及交叉核对。”Cooley表示,对大河医疗中心而言,牵涉上千种药物的这个过程历时数月才完成。
显然,部署物联网会带来一系列技术和程序上的挑战,企业只有克服这些挑战,才能得益于互联物理网络。此外,物联网还牵涉IT架构方面的多个技术部分,所以还需要来自企业各部门或者来自企业外部的专业知识。埃森哲技术实验室负责人Mike Redding表示:“物联网本身不是一项技术。你也买不到现成的物联网。”
他还表示,网络服务和应用程序的性能也是部署物联网时要关注的一个问题。比如说,如果一个简单的传感和监测应用程序用于装有100个传感器的地方,收集遥测数据,那么每年生成的原始数据总量可能会超过4PB。
一些在考虑部署物联网的企业面临最大的障碍是,不知道怎么处理收集上来的海量信息。Redding说:“社交媒体、传感器和嵌入式设备增强了之前未曾涉足的领域收集数据的能力。由于许多工具挖掘无数新的非结构化数据源,问题不再是缺少足够的数据,而是确保没有错过真正需要的数据。”
另一个挑战是,获得必要的分析技能以处理海量数据。埃森哲的研究表明,物色一流的分析人才来管理海量数据,这在今后几年会很困难。该公司开展了为期一年的研究项目,结果表明,到2015年,预计美国市场有望为分析专家创造近3.9万个新岗位,但在那些岗位当中,只有23%能找到合格的求职者。
就物联网而言,基本的数据分析技能不顶用,企业将需要既懂得数据分析,又能深入了解这些新数据对其所在行业有什么价值的这类人。
Sutaria说:“应用物联网解决方案的企业需要考察几个关键要素,其中之一就是形成基于数据进行决策的文化。物联网实际上从现实世界提取源源不断的准确数据。如何把这些数据转换成信息,然后转换成知识,最后转换成智慧,这就需要企业拥有传统的分析技能。”
比如在农业领域,科学家必须了解在各种天气条件下农作物需要灌溉多少水。物联网可以自动提供定期收集的准确数据,这些数据关于天气、农场和农作物的每项生长条件。但是一旦收集了数据,就要根据这些数据采取措施,而这有赖于熟悉某个特定领域的科学家。
除此之外,采用物联网技术面临的其他常见障碍包括,传感器、分析功能及需要投入资金。Redding表示,“知识就是力量。充分利用物联网的企业有望获得难以置信的竞争优势。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12