
大数据发展需要“破冰强基”
大数据正在深刻地改变着经济社会生活的方方面面。然而,这一互联网新技术,眼下却遭遇数据难以共享等诸多困难,数据的公信度和共识性因此打折。同时,大数据在应用、交易、法律环境等方面也面临着不少制度性难题。
“高热”之下有“冰点”
盘点当下的高热词,“大数据”是其中之一。但业内专家担忧,“高热”下掩盖着“冰点”,这些“冰点”将阻碍刚刚起步的我国大数据产业的健康成长。
【“冰点”一:大数据应用不足】
阿里巴巴集团副总裁、数据委员会会长车品觉认为,目前,大数据行业最突出的问题是“只见树木,不见森林”。移动互联网、电商等是“重用”大数据的重点领域,而大部分传统企业对此却缺乏意识,甚至还不清楚如何利用数据。
同时,大数据应用的深度也远远不够。“国内的不少企业仅是利用大数据模型做营销方案,而像谷歌、亚马逊等国际知名企业,已将大数据思维全面融入公司管理。”车品觉说。
【“冰点”二:“找不到数据”】
找不到数据是数据应用企业面临的普遍困扰。海尔家电产业集团营销总经理宋照伟直言,海尔希望获知用户的多维度行为习惯,但能够掌握的信息渠道仍然狭窄,信息量不够理想。
“拿走数据的多,贡献数据的少。”贵阳大数据交易所执行总裁王叁寿表示,不少企业以保护商业机密或节省数据整理成本等为理由,不愿意交易自身数据。
【“冰点”三:商业数据“割据”,政府数据“孤立”】
以阿里巴巴旗下的“芝麻信用”为例,其评分依据的数据只来自支付宝平台,本身公信力有限,而其他企业希望能利用支付宝相关数据时,又很难获得。
同样,政府数据公开程度也非常有限。比如,银行在为客户办理信贷业务时,只能查到其在当地的工商信息,无法获知其在外地的情况。
【“冰点”四:侵权还是“个性化推荐”存争议】
对于个人数据隐私保护、数据权属、政府数据公开等问题,目前尚无明确的规定,因此,纠纷时有发生。
以朱烨诉百度侵权案为例,2015年,网民朱烨发现自己用百度搜索关键词后会收到相关广告推送,因此将百度以侵犯隐私权为由告上法庭。法院一审认定百度侵犯朱烨隐私权,但二审却撤销一审判决。中国政法大学传播法中心研究员朱巍表示,两级法院给出截然相反的判决,说明法律界对此类新情况认识不一致。
三大基础性“缺陷”待弥补
专家从三个方面分析了产生上述问题的原因,并认为这是我国大数据产业发展必须加快弥补的三大基础性“缺陷”。
【“缺陷”一:产业信息化尚未完成】
IBM大中华区大数据与分析部数据分析产品线主管洪建勋研究发现,目前国内大量客户还停留在将80%的时间用在数据获取上,还缺乏系统化整理,更谈不上“商务智能”应用了。这和企业信息化水平较低有直接关系。
中国社会科学院信息化研究中心秘书长姜奇平表示,信息化是大数据的基础,而信息化的推进都是先从消费者开始,然后才传导到企业和政府。农业、工业、能源等行业的数据化还需假以时日。
【“缺陷”二:“大数据思维”未成行业共识】
车品觉表示,现在企业大多将大数据作为工具,导致“要数据的不知道大数据从哪里来,做数据的不知道大数据如何用,用数据的人担心真实性不敢用”。
也正是因为“大数据思维”未能达成共识,数据互惠共利的环境难以形成,推动数据共享就比较艰难。
【“缺陷”三:监管和立法滞后】
大数据产业发展之快难以想象,但对于数据权属、个人数据隐私、政府数据公开等,目前都缺乏具有针对性的法律法规。而且,大数据作为新型资源,目前还没有明确专门的监管部门。
朱巍介绍,现在对个人数据的保护,大多依照2012年通过的“关于加强网络信息保护的决定”,这已远远不能适应目前行业的发展现状。
在加快发展中走出“成长烦恼期”
业内人士认为,我国大数据产业在目前乃至较长一段时间或都处于“成长烦恼期”。因此,要在加快发展中探索成长之路。
从规模上看,2015年我国大数据市场仅有102亿元,不及一家股份制银行一年的净利润。而在国内以及境外的资本市场上,还没有出现中国的大数据行业巨头。
关于大数据应用问题,清华大学数据科学研究院执行副院长韩亦舜表示,随着社会信息化程度加深,数据源将更加丰富,大数据应用范围将不断扩大。
对于大数据共享的困境,业内专家指出,这在全球都是一个难题。目前,我国正探索建立大数据交易所,以交易驱动数据共享;有的行业内部已经形成企业间互换数据的惯例。
另外,可以借鉴国外经验,对政府数据进行更好的挖掘、利用,如将非涉密的政府数据放在网上,供社会查阅。
在大数据立法与监管层面,业内人士建议,应确定监管部门,并完善相关立法,加紧制定有关大数据的标准、规则、指引,引导行业规范发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30