
数据分析师:数据过大将妨碍分析洞察
大数据对使用者来说看似意味着好的洞察,但过量的数据并不一定带来更好的洞察,统计学家Nate Silver这样认为,他是美国最著名的数据分析师。“数据量越大,人们可以用来证明他们所想的结果的证据就越多”,他说。
大数据不仅仅在政治上应用,得到许多有趣的结论,在医学领域和地震预测,研究人员更希望利用大数据得出有趣的结论,而不是什么消息都没有。在真正的洞察中,大数据会带来许多“虚假的相关性”,那些看似互相关联的数据,其实只是干扰数据。
Nate Silver由此提出了四条建议,帮助使用者获得更好的洞察。
1.概率性思考而非绝对性化思考
正如调查中也会出现误差一样,不要惧怕预测中的不确定性,不确定性是重要的和科学的。如果忽略了事物的不确定性会导致严重后果。Nate Silver指出,在1997年时,国家气象局预测,Grand Forks的Red River的洪水水位是49英尺,因此镇上的防洪堤被设计成能承受51英尺的洪水。不幸的是,国家气象局在分析时并未将通过过去的数据得出的正负9英尺误差算进去,洪水达到了54英尺,Grand Forks被淹没。
现在国家气象局更加关注不确定性,这在预测中非常重要。
2.明确你的出发点,明白你的弱点
Nate Silver以一个性别歧视实验为例,一份女性名字和男性名字的简历,即使被调查人明确表示他没有性别歧视,但他潜意识更可能歧视女性的简历。而知道自己有性别歧视倾向的人会采取一定办法来抵消它的作用。
3.在得出结论前,了解数据所在的真实情况,理论联系实际。换句话说,能够准确预测San Diego的天气,并不代表可以同样准确预测Buffalo的天气。
就好比,预测一个稳定的经济环境比动荡、萧条的经济环境容易得多,这也解释了为什么许多预测者大都对经济衰退毫无准备,因为预测模型是基于1986-2006的数据创建的,那段时间经济异常稳定。
4.尝试和错误是有帮助的。
预测模型总是在错误中缓慢成长的,就像生活中的许多事情:“你应该怀疑奇迹般的结果”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07